

ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION

(A Statutory body of the Government of Andhra Pradesh)

3rd,4th and 5th floors, Neeladri Towers, Sri Ram Nagar,6th Battalion Road, Atmakur (V), Mangalagiri (M), Guntur-522 503, Andhra Pradesh **Web**: www.apsche.org **Email**: acapsche@gmail.com

REVISED SYLLABUS OF B.Sc. (Chemistry) UNDER CBCS FRAMEWORK WITH EFFECT FROM 2020-21

PROGRAMME: FOUR-YEAR UG HONOURS PROGRAMME

CHEMISTRY

(With Learning Outcomes, Unit-wise Syllabus, References, Co-curricular Activities & Model Q.P.)

For Fifteen Courses of 1, 2, 3 & 4 Semesters)

(To be Implemented from 2020-21 Academic Year) Andhra Pradesh State Council of Higher Education

B.Sc. Chemistry Revised Syllabus under CBCS w.e.f. 2020-21

Structure of Chemistry Core Syllabus under CBCS

YEAR	SEMESTER	COURSE	TITLE	MARKS	CREDITS
I	I	Ι	Inorganic and Physical Chemistry	100	03
			Practical – I Analysis of SALT MIXTURE	50	02
	II	II	Organic and General Chemistry	100	03
			Practical – II Volumetric Analysis	50	02
II	III	III	Organic Chemistry and Spectroscopy	100	03
			Practical – IIIOrganic preparations and IR Spectral Analysis	50	02
	IV	IV	Inorganic, Organic and Physical Chemistry	100	03
			Practical – IVOrganic Qualitative analysis	50	02
	V		Inorganic and Physical Chemistry	100	02
		V	Practical-V Course Conductometric and Potentiometric Titrimetry	50	02

SEMESTER - I

Course I (Inorganic &Physical Chemistry)

60 hrs. (4h/w)

Course outcomes:

At the end of the course, the student will be able to;

- 1. Understand the basic concepts of p-block elements
- 2. Explainthe differencebetweensolid, liquidand gases in terms of intermolecular interactions.
- 3. Applytheconceptsofgasequations,pHandelectrolyteswhilestudyingotherchemistrycour ses.

INORGANIC CHEMISTRY

24 h

UNIT -I

Chemistry of p-block elements

8h

- **Group 13:** Preparation & structure of Diborane, Borazine
- **Group 14:** Preparation, classification and uses of silicones
- $\textbf{Group 15}: \ Preparation \ \& \ structures \ of \ Phosphonitrilic \ halides \ \{(PNCl_2)_n where$

n=3, 4

- **Group 16**: Oxides and Oxoacids of Sulphur (structures only)
- Group 17: Pseudohalogens, Structures of Interhalogen compounds.

UNIT-II

1. Chemistry of d-block elements:

6h

Characteristics of d-block elements with special reference to electronic configuration, variable valence, magnetic properties, catalytic properties and ability to form complexes. Stability of various oxidation states.

2. Chemistry of f-block elements:

6h

Chemistry of lanthanides - electronic structure, oxidation states, lanthanide contraction, consequences of lanthanide contraction, magnetic properties. Chemistry of actinides - electronic configuration, oxidation states, actinide contraction, comparison of lanthanides and actinides.

3. Theories of bonding in metals:

4h

Valence bond theory and Free electron theory, explanation of thermal and electrical conductivity of metals based on these theories, Band theory- formation of bands, explanation of conductors, semiconductors and insulators.

PHYSICAL CHEMISTRY

36h

UNIT-III

Solid state 10h

Symmetry in crystals. Law of constancy of interfacial angles. The law of rationality of indices. The law of symmetry. Miller indices, Definition of lattice point, space lattice, unit cell. Bravais lattices and crystal systems. X-ray diffraction and crystal structure. Bragg's law. Powder method. Defects in crystals. Stoichiometric and non-stoichiometric defects.

UNIT-IV

1. Gaseous state 6h

van der Waal's equation of state. Andrew's isotherms of carbon dioxide, continuity of state. Critical phenomena. Relationship between critical constants and vander Waal's constants. Lawof corresponding states. Joule- Thomson effect. Inversion temperature.

2.Liquid state 4h

Liquid crystals,mesomorphicstate. Differences between liquid crystal and solid/liquid. Classification of liquid crystals into Smectic and Nematic. Application of liquid crystals as LCD devices.

UNIT-V

Solutions, Ionic equilibrium& dilute solutions

1. Solutions 6h

Azeotropes-HCl-H₂O system and ethanol-water system. Partially miscible liquids-phenol-water system. Critical solution temperature (CST), Effect of impurity on consulate temperature. Immiscible liquids and steam distillation. Nernst distribution law. Calculation of the partition coefficient. Applications of distribution law.

2. Ionic equilibrium 3h

Ionic product, common ion effect, solubility and solubility product. Calculations based on solubility product.

3. Dilute solutions 7h

Colligative properties- RLVP, Osmotic pressure, Elevation in boing point and depression in freezing point. Experimental methods for the determination of molar mass of a non-volatile

solute using osmotic pressure, Elevation in boing point and depression in freezing point. Abnormal colligative properties. Van't Hoff factor.

Co-curricular activities and Assessment Methods

- 1. Continuous Evaluation: Monitoring the progress of student's learning
- 2. ClassTests, Worksheets and Quizzes
- 3. Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality
- SemesterendExamination:criticalindicatorofstudent'slearningandteachingmethodsadoptedby teachersthroughoutthesemester.

List of Reference Books

- 1. Principles of physical chemistry by Prutton and Marron
- 2. Solid State Chemistry and its applications by Anthony R. West
- 3. Text book of physical chemistry by K L Kapoor
- 4. Text book of physical chemistry by S Glasstone
- 5. Advanced physical chemistry by Bahl and Tuli
- 6. Inorganic Chemistry by J.E.Huheey
- 7. Basic Inorganic Chemistry by Cotton and Wilkinson
- 8. A textbook of qualitative inorganic analysis by A.I. Vogel
- 9. Atkins, P.W. & Paula, J. de Atkin's Physical Chemistry Ed., Oxford University Press 10th Ed (2014).
- 10. Castellan, G.W. Physical Chemistry 4th Ed. Narosa (2004).
- 11. Mortimer, R. G. Physical Chemistry 3rd Ed. Elsevier: NOIDA, UP (2009).
- 12. Barrow, G.M. Physical Chemistry

LABORATORY COURSE -I

30hrs (2 h / w)

Practical-I Analysis of SALT MIXTURE

(At the end of Semester-I)

Qualitative inorganic analysis (Minimum of Six mixtures should be analyzed)

50 M

Course outcomes:

At the end of the course, the student will be able to;

- 1. Understand the basic concepts of qualitative analysis of inorganic mixture
- 2. Use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- 3. Apply the concepts of common ion effect, solubility product and concepts related to qualitative analysis

Analysis of SALT MIXTURE

50 M

Analysis of mixture salt containing two anions and two cations (From two different groups) from the following:

Anions: Carbonate, Sulphate, Chloride, Bromide, Acetate, Nitrate, Borate, Phosphate.

Cations: Lead, Copper, Iron, Aluminium, Zinc, Nickel, Manganese, Calcium, Strontium,

Barium, Potassium and Ammonium.

SEMESTER - II

Course II – (Organic & General Chemistry) 60 hrs (4h/w)

Course outcomes:

At the end of the course, the student will be able to;

- Understandandexplainthedifferentialbehaviorof
 organiccompoundsbasedonfundamental conceptslearnt.
- 2. Formulatethemechanismoforganicreactions by recalling and correlating the fundamental properties of the reactants involved.
- 3. LearnandidentifymanyorganicreactionmechanismsincludingFreeRadical Substitution, Electrophilic AdditionandElectrophilicAromaticSubstitution.
- 4. Correlateanddescribethestereochemicalpropertiesoforganiccompounds and reactions.

ORGANIC CHEMISTRY

36h

UNIT-I

Recapitulation of Basics of Organic Chemistry

Carbon-Carbon sigma bonds (Alkanes and Cycloalkanes)

12h

General methods of preparation of alkanes- Wurtz and WurtzFittig reaction, Corey House synthesis, physical and chemical properties of alkanes, Isomerism and its effect on properties, Free radical substitutions; Halogenation, concept of relative reactivity v/s selectivity. Conformational analysis of alkanes (Conformations, relative stability and energy diagrams of Ethane, Propane and butane). General molecular formulae of cycloalkanes and relative stability, Baeyer strain theory, Cyclohexane conformations with energy diagram, Conformations of monosubstituted cyclohexane.

UNIT-II

Carbon-CarbonpiBonds(AlkenesandAlkynes)

12h

Generalmethodsofpreparation, physical and chemical properties. Mechanism of E1, E2, E1 cbreactions, Saytzeff and Hoffmann eliminations, Electrophilic Additions, mechanism (Markownik off/Antimarkownik off addition) with suitable examples, syn and anti-addition; addition of H_2 , X_2 , HX. oxymercuration-demercuration, hydroboration-oxidation, ozonolysis, hydroxylation, Diels Alderreaction, 1, 2-and 1, 4-addition reactions in conjugated dienes.

Reactionsofalkynes; acidity, electrophilic and nucleophilic additions, hydration to form carbonyl compounds, Alkylation of terminal alkynes.

UNIT-III

Benzene and its reactivity

12h

Concept of aromaticity, Huckel's rule - application to Benzenoid (Benzene, Naphthalene) and Non - Benzenoid compounds (cyclopropenylcation, cyclopentadienyl anion and tropyliumcation)

Reactions - General mechanism of electrophilic aromatic substitution, mechanism of nitration, Friedel- Craft's alkylation and acylation. Orientation of aromatic substitution - ortho, para and meta directing groups. Ring activating and deactivating groups with examples (Electronic interpretation of various groups like NO₂ and Phenolic). Orientation of (i) Amino, methoxy and methyl groups (ii) Carboxy, nitro, nitrile, carbonyl and sulphonic acid groups (ii) Halogens

(Explanation by taking minimum of one example from each type)

GENERAL CHEMISTRY

24 h

UNIT-IV

1. Surface chemistry and chemical bonding

Surface chemistry 6h

Colloids- Coagulation of colloids- Hardy-Schulze rule. Stability of colloids, Protection of Colloids, Gold number.

Adsorption-Physical and chemical adsorption, Langmuir adsorption isotherm, applications of adsorption.

2. Chemical Bonding

6h

Valence bond theory, hybridization, VB theory as applied toClF₃,Ni(CO)₄, Molecular orbital theory -LCAO method, construction of M.O. diagrams for homo-nuclear and hetero-nuclear diatomic molecules (N₂, O₂, CO and NO).

3. HSAB

Pearson's concept, HSAB principle & its importance, bonding in Hard-Hard and Soft-Soft combinations.

UNIT-V

Stereochemistry of carbon compounds

10h

Molecular representations- Wedge, Fischer, Newman and Saw-Horse formulae.

Optical isomerism: Optical activity- wave nature of light, plane polarised light, optical rotation and specific rotation.

Chiral molecules- definition and criteria(Symmetry elements)- Definition of enantiomers and diastereomers – Explanation of optical isomerism with examples- Glyceraldehyde, Lactic acid, Alanine, Tartaric acid, 2,3-dibromopentane.

D,L, R,S and E,Z- configuration with examples.

Definition of Racemic mixture – Resolution of racemic mixtures (any 3 techniques)

Co-curricular activities and Assessment Methods

Continuous Evaluation: Monitoring the progress of student's learning

ClassTests, Worksheets and Quizzes

Presentations, Projects and Assignments and Group Discussions: Enhances critical thinkings kills and personality

Semester-end Examination: critical indicator of student's learning and teaching methods adopted by teachers throughout these mester.

List of Reference Books

Theory:

Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (PearsonEducation).

Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds; Wiley: London, 1994.

Kalsi, P. S. Stereochemistry Conformation and Mechanism; New Age International, 2005.

Practical:

Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000).

Ahluwalia, V.K. &Dhingra, S. Comprehensive Practical Organic Chemistry: Qualitative Analysis, University Press (2000).

Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson (2012)

Additional Resources:

<u>Solomons</u>, T. W. G.; <u>Fryhle</u>, <u>C.</u> B. &<u>Snyder</u>, <u>S</u>. A. Organic Chemistry, 12th Edition, Wiley. Bruice, P. Y. Organic Chemistry, Eighth Edition, Pearson.

Clayden, J.; Greeves, N.&Warren, S. Organic Chemistry, Oxford.

Nasipuri, D. <u>Stereochemistry of Organic Compounds: Principles and Applications, Third Edition,</u> NewAge International.

Gunstone, F. D. Guidebook to Stereochemistry, Prentice Hall Press, 1975.

LABORATORY COURSE-II

30hrs (2 h / w)

Practical-II Volumetric Analysis

(At the end of Semester-II)

Course outcomes:

At the end of the course, the student will be able to;

- 1. Use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- 2. Understandandexplainthevolumetric analysisbasedonfundamental conceptslearnt in ionic equilibria
- 3. Learnandidentifythe concepts of a standard solutions, primary and secondary standards
- 4. Facilitate the learner to make solutions of various molar concentrations. This may include: The concept of the mole; Converting moles to grams; Converting grams to moles; Defining concentration; Dilution of Solutions; Making different molar concentrations.

Volumetric analysis

50 M

- 1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.
- 2. Determination of Fe (II) using KMnO₄ with oxalic acid as primary standard.
- 3. Determination of Cu (II) using Na₂S₂O₃ with K₂Cr₂O₇ as primary standard.
- 4. Estimation of water of crystallization in Mohr's salt by titrating with KMnO₄

SEMESTER - III

Course III (ORGANICCHEMISTRY&SPECTROSCOPY) 60hrs (4 h / w)

Course outcomes:

At the end of the course, the student will be able to;

- 1. Understandpreparation,propertiesandreactionsofhaloalkanes,haloarenesand oxygencontaining functionalgroups.
- 2. Usethesyntheticchemistrylearntinthiscoursetodofunctional group transformations.
- 3. Toproposeplausiblemechanismsforanyrelevantreaction

ORGANIC CHEMISTRY

34h

UNIT - I

1. Chemistry of Halogenated Hydrocarbons:

6h

Alkylhalides:Methodsofpreparationandproperties,nucleophilicsubstitutionreactions— SN1,SN2andSNimechanismswithstereochemicalaspectsandeffectofsolventetc.;nucleophilics ubstitutionvs. elimination, Williamson's synthesis.

Arylhalides:Preparation(includingpreparationfromdiazoniumsalts)andproperties,nucleophilic aromatic substitution;SNAr,Benzynemechanism.

Relativereactivityofalkyl, allyl, benzyl, vinylandarylhalidestowardsnucleophilicsubstitut ionreactions.

2. Alcohols &Phenols 6h

Alcohols: preparation, properties and relative reactivity of 1°, 2°, 3° alcohols, BouvaeltBlanc Reduction; Oxidationofdiolsbyperiodicacidandleadtetra acetate,Pinacol-Pinacolonerearrangement;

Phenols:Preparationandproperties; Acidityandfactors effecting it, Ringsubstitution reactions, Reimer-Tiemannand Kolbe's-Schmidt Reactions, Fries and Claisenrearrangements with mechanism;

UNIT-II

CarbonylCompounds

10h

Structure, reactivity, preparation and properties;

 $\label{lem:continuous} Nucleophilicaddition-elimination reactions with ammonia derivatives \\ Mechanisms of Aldoland Benzoin condensation, Claisan-Schmidt, Perkin, \\ Cannizzaro and Wittigreaction, Beckmann halo form reaction and Baeyer Villigeroxidation, α-substitution reactions, oxidations and reductions (Clemmensen, wolf-kishner, with LiAlH4).$

Additionreactions of α , β -unsaturated carbonyl compounds: Michael addition.

Activemethylenecompounds:

Keto-

enoltautomerism. Preparation and synthetic applications of diethyl malonate and ethylaceto acetate.

UNIT-III

&NaBH4).

CarboxylicAcidsand their Derivatives

12h

General methods of preparation, physical properties and reactions of monocarboxylic acids, effect of substituentsonacidicstrength. Typical reactions of dicarboxylic acids, hydroxyacids and unsaturat edacids.

Preparationandreactionsofacidchlorides, anhydrides, estersandamides; Comparative study of nucleophilic substitutionatacyl group-Mechanism of acidicandalkaline hydrolysis of esters, Claisencondensation, Reform at sky reactions and Curtius rearrangement

Reactions involving H, OH and COOH groups- salt formation, anhydride formation, acid chloride formation, amide formation and esterification (mechanism). Degradation of carboxylic acids by Huns-Diecker reaction, decarboxylation by Schimdt reaction, Arndt-Eistert synthesis, halogenation by Hell- Volhard- Zelinsky reaction.

SPECTROSCOPY 26 h

UNIT-IV

Molecular Spectroscopy:

18h

Interactionofelectromagnetic radiation with molecules and various types of spectra;

Rotation spectroscopy: Selection rules, intensities of spectral lines, determination of bond lengths of diatomic and linear triatomic molecules, isotopic substitution.

Vibrational spectroscopy: Classical equation of vibration, computation of force constant, Harmonic and anharmonic oscillator, Morsepotential curve, vibrational degrees offered for polyatomic molecules, modesofvibration. Selection rules for vibrational transitions, Fundamental frequencies, overtones and hot bands.

Electronic spectroscopy: Energy levels of molecular orbitals (σ, π, n) . Selection rules for electronic spectra. Types of electronic transitions in molecules, effect of conjugation. Concept of chromophore. bathochromic and hypsochromic shifts.Beer-Lambert's law and its limitations.

Nuclear Magnetic Resonance (NMR) spectroscopy: Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone.

UNIT-V 8h

Application of Spectroscopy to Simple Organic Molecules

Application of visible, ultraviolet and Infrared spectroscopy in organic molecules. Application of electronic spectroscopy and Woodward rules for calculating λ_{max} of

conjugated dienes and α,β – unsaturated compounds.

Infrared radiation and types of molecular vibrations, functional group and fingerprint region. IR spectra of alkanes, alkenes and simple alcohols (inter and intramolecular hydrogen bonding), aldehydes, ketones, carboxylic acids and their derivatives (effect of substitution on >C=O stretching absorptions).

Co-curricular activities and Assessment Methods Continuous Evaluation: Monitoring the progress of student's learning Class Tests, Work sheets and Quizzes Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality Semester-end Examination: critical indicator of student's learning and teaching methods adopted byteachers throughout the semester.

List of Reference Books

- 1. A Text Book of Organic Chemistry by Bahl and Arunbahl
- 2. A Text Book of Organic chemistry by I L FinarVol I
- 3. Organic chemistry by Bruice
- 4. Organic chemistry by Clayden
- 5. Spectroscopy by William Kemp
- 6. Spectroscopy by Pavia
- 7. Organic Spectroscopy by J. R. Dyer
- 8. Elementary organic spectroscopy by Y.R. Sharma
- 9. Spectroscopy by P.S.Kalsi
- 10. Spectrometric Identification of Organic Compounds by Robert M Silverstein, Francis X Webster
- 11. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- 12. Furniss, B.S., Hannaford, A.J., Smith, P.W.G. &Tatchell, A.R. Practical Organic Chemistry, 5th Ed. Pearson (2012)
- 13. Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000).

Practical Course-IIIOrganic preparations and IR Spectral Analysis

(At the end of Semester- III)

Course outcomes:

Onthecompletion of the course, the student will be able to do the following:

- 1. how to use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- 2. how to calculate limiting reagent, theoretical yield, and percent yield
- 3. how to engage in safe laboratory practices by handling laboratory glassware, equipment, and chemical reagents appropriately
- 4. how to dispose of chemicals in a safe and responsible manner
- 5. how to perform common laboratory techniques including reflux, distillation, recrystallization, vacuum filtration.
- 6. how to create and carry out work up and separation procedures
- 7. how to critically evaluate data collected to determine the identity, purity, and percent yield of products and to summarize findings in writing in a clear and concise manner

Organic preparations:

40M

- i. Acetylation of one of the following compounds:
 - amines (aniline, o-, m-, ptoluidines and o-, m-, p-anisidine) and phenols (β -naphthol, vanillin, salicylic acid) by any one method:
 - a. Using conventional method.
 - b. Using green approach
- ii. Benzolyation of one of the following amines

(aniline, o-, m-, p- toluidines and o-, m-, p-anisidine)

- iii. Nitration of any one of the following:
 - a. Acetanilide/nitrobenzene by conventional method
 - b. Salicylic acid by green approach (using ceric ammonium nitrate).

IR Spectral Analysis

10M

IR Spectral Analysis of the following functional groups with examples

- a) Hydroxyl groups
- b) Carbonyl groups
- c) Amino groups
- d) Aromatic groups

SEMESTER - IV

Course IV (INORGANIC, ORGANIC AND PHYSICAL CHEMISTRY) 60hrs (4 h / w)

Course outcomes:

At the end of the course, the student will be able to;

- 1. Tolearnaboutthelawsofabsorptionoflightenergybymolecules and the subsequent photoch emical reactions.
- 2. Tounderstandtheconceptofquantumefficiencyandmechanismsofphotochemicalreaction s.

UNIT - I

OrganometallicCompounds

8h

Definition and classification of organometallic Compounds on the basis of bond type, Concept of hapticity of organicligands. Metalcarbonyls:18electronrule,electroncountofmononuclear, polynuclear and substituted metalcarbonyls of 3dseries.Generalmethods of preparation of mono and binuclear carbonyls of 3dseries.P-acceptor behaviour of carbon monoxide. Synergic effects (VB approach) - (MOdiagram of CO can be referred to for synergic effect to IR frequencies).

UNIT - II

Carbohydrates 8h

Occurrence, classification and their biological importance, Monosaccharides: Constitution and absolute configuration of glucose and fructose, epimers and anomers, mutarotation, determination of ringsize of glucose and fructose, Haworth projections and conformational structures; Interconversions of aldoses and ketoses; Killiani-Fischer synthesis and Ruffdegradation; Disaccharides—Elementary treatment of maltose, lactose and sucrose. Polysaccharides—Elementary treatment of starch.

UNIT-III

Amino acids and proteins

6h

Introduction: Definition of Amino acids, classification of Amino acids into alpha, beta, and gamma amino acids. Natural and essential amino acids - definition and examples, classification of alpha amino acids into acidic, basic and neutral amino acids with examples. Methods of synthesis: General methods of synthesis of alpha amino acids (specific examples - Glycine, Alanine, valine and leucine) by following methods: a) from halogenated carboxylic acid b) Gabriel Phthalimide synthesis c) strecker's synthesis.

Physical properties: Zwitter ion structure - salt like character - solubility, melting

points, amphoteric character, definition of isoelectric point.

Chemical properties: General reactions due to amino and carboxyl groups - lactams from gamma and delta amino acids by heating- peptide bond (amide linkage). Structure and nomenclature of peptides and proteins.

Heterocyclic Compounds

7h

Introduction and definition: Simple five membered ring compounds with one hetero atom Ex. Furan. Thiophene and pyrrole - Aromatic character – Preparation from 1, 4, -dicarbonyl compounds, Paul-Knorr synthesis.

Properties: Acidic character of pyrrole - electrophillic substitution at 2 or 5 position, Halogenation, Nitration and Sulphonation under mild conditions - Diels Alder reaction in furan.

Pyridine – Structure - Basicity - Aromaticity- Comparison with pyrrole- one method of preparation and properties - Reactivity towards Nucleophilic substitution reaction.

UNIT-IV

Nitrogen Containing Functional Groups

Preparation, properties and important treactions of nitrocompounds, amines and diazonium salts.

1. Nitro hydrocarbons

3h

Nomenclature and classification-nitro hydrocarbons, structure -Tautomerism of nitroalkanes leading to aci and keto form, Preparation of Nitroalkanes, reactivity -halogenation, reaction with HONO (Nitrous acid), Nef reaction and Mannich reaction leading to Micheal addition and reduction.

2. Amines: 11h

Introduction, classification, chiralityin amines (pyramidal inversion), importance andgeneral methods of preparation.

Properties: Physical properties, Basicity of amines: Effect of substituent, solvent and steric effects. Distinction between Primary, secondary and tertiary aminesusing Hinsberg's method and nitrousacid. Discussion of thefollowing reactions with emphasis on the mechanistic pathway: Gabriel Phthalimide synthesis, Hoffmann- Bromamidereaction, Carbylaminereaction, Mannichreaction, Hoffmann's exhaustive methylation, Hofmann-elimination reaction and Copeelimination.

Diazonium Salts: Preparation and synthetic applications of diazonium salts including preparation of arenes, haloarenes, phenols, cyano and nitro compounds. Coupling reactions of diazonium salts (preparation of azo dyes).

UNIT-V

Photochemistry 5h

Difference between thermal and photochemical processes, Laws of photochemistry- Grothus-Draper's law and Stark-Einstein's law of photochemical equivalence, Quantum yield-Photochemical reaction mechanism- hydrogen- chlorine and hydrogen- bromine reaction. Qualitative description of fluorescence, phosphorescence, Jablonski diagram, Photosensitized reactions- energy transfer processes (simple example).

Thermodynamics 12 h

The first law of thermodynamics-statement, definition of internal energy and enthalpy, Heat capacities and their relationship, Joule-Thomson effect- coefficient, Calculation of work for the expansion of perfect gas under isothermal and adiabatic conditions for reversible processes, State function. Temperature dependence of enthalpy of formation- Kirch off s equation, Second law of thermodynamics Different Statements of the law, Carnot cycle and its efficiency, Carnot theorem, Concept of entropy, entropy as a state function, entropy changes in reversible and irreversible processes. Entropy changes in spontaneous and equilibrium processes. Third law of thermodynamics, Nernst heat theorem, Spontaneous and non- spontaneous processes, Helmholtz and Gibbs energies-Criteria for spontaneity.

Co-curricular activities and Assessment Methods Continuous Evaluation: Monitoring the progress of student's learning Class Tests, Work sheets and Quizzes Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality Semester-end Examination: critical indicator of student's learning and teaching methods adopted byteachers throughout the semester.

List of Reference Books

- 1. Concise coordination chemistry by Gopalan and Ramalingam
- 2. Coordination Chemistry by Basalo and Johnson
- 3. Organic Chemistry by G.Mareloudan, Purdue Univ
- 4. Text book of physical chemistry by S Glasstone
- 6. Concise Inorganic Chemistry by J.D.Lee
- 7. Advanced Inorganic Chemistry Vol-I by Satyaprakash, Tuli, Basu and Madan
- 8. A Text Book of Organic Chemistry by Bahl and Arunbahl
- 9. A Text Book of Organic chemistry by I L FinarVol I
- 10. A Text Book of Organic chemistry by I L FinarVol II
- 11. Advanced physical chemistry by Gurudeep Raj

LABORATORY COURSE -IV 30hrs(2 h / w)

Practical Course-IV Organic Qualitative analysis

50 M

(At the end of Semester- IV)

Course outcomes:

At the end of the course, the student will be able to;

- 1. Use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- 2. Determine melting and boiling points of or ganic compounds
- 3. Understandtheapplication of concepts of different organic reactions studied in theory part of organic chemistry

Organic Qualitative analysis

50 M

Analysis of an organic compound through systematic qualitative procedure for functional group identification including the determination of melting point and boiling point with suitable derivatives.

Alcohols, Phenols, Aldehydes, Ketones, Carboxylic acids, Aromatic primary amines, amides and simple sugars

SEMESTER - IV

CourseV(INORGANIC &PHYSICAL CHEMISTRY) 60 hrs (4 h / w)

Course outcomes:

At the end of the course, the student will be able to;

- Understand concepts
 Of boundary conditions and quantization, probability distribution, most probable values, uncertainty and expectation values
- 2. Application of quantization to spectroscopy.
- 3. Various types of spectra and the irusein structure determination.

INORGANIC CHEMISTRY

26 h

UNIT-I

Coordination Chemistry

12 h

IUPAC nomenclature of coordination compounds, Structural and stereoisomerism in complexes with coordination numbers 4 and 6. Valence Bond Theory (VBT): Inner and outer orbital complexes. Limitations of VBT, Crystal field effect, octahedral symmetry. Crystal field stabilization energy (CFSE), Crystal field effects for weak and strong fields. Tetrahedral symmetry, Factors affecting the magnitude of crystal field splitting energy, Spectrochemical series, Comparison of CFSE for Octahedral and Tetrahedral complexes, Tetragonal distortion of octahedral geometry, Jahn-Teller distortion, square planar coordination.

UNIT -II

1. InorganicReactionMechanism:

4h

Introduction to inorganic reaction mechanisms. Concept of reaction pathways, transitionstate, intermediate and activated complex. Labile and inert complexes, lig and substitution reactions - SN^1 and SN^2 , Substitution reactions in square planar complexes, Trans-effect, the ories of trans effect and its applications

2. Stability of metal complexes:

2h

Thermodynamic stability and kinetic stability, factors affecting the stability of metal complexes, chelate effect, determination of composition of complex by Job's method and mole ratio method.

Bioinorganic Chemistry:

8h

Metalions present inbiological systems, classification of elements according to their action in biolog ical system. Geochemical effect on the distribution of metals, Sodium/K- pump, carbonicanhydrase and carboxypeptidase.

Excess and deficiency of sometracemetals. Toxicityofmetalions(Hg,Pb,CdandAs), reasons fortoxicity, Use of chelatingagentsinmedicine, Cisplatinasananti-cancerdrug. Iron and its application in bio-systems, Haemoglobin, Myoglobin. Storage and transfer of iron.

PHYSICAL CHEMISTRY

34 h

UNIT-III

1.Phase rule

6Th Concept of phase, components, degrees of freedom. Thermodynamic derivation of Gibbs phase rule. Phase diagram of one component system - water system, Study of Phase diagrams of Simple eutectic systems i) Pb-Ag system, desilverisation of lead ii) NaCl-Water system, Congruent and incongruent melting point - Definition and examples for systems having congruent and incongruent melting point , freezing mixtures.

UNIT-IV

Electrochemistry 14h

Specific conductance, equivalent conductance and molar conductance- Definition and effect of dilution. Cell constant. Strong and weak electrolytes, Kohlrausch's law and its applications, Definition of transport number, determination of transport number by Hittorf's method. Debye-Huckel-Onsagar's equation for strong electrolytes (elementary treatment only), Application of conductivity measurements- conductometric titrations.

Electrochemical Cells- Single electrode potential, Types of electrodes with examples: Metalmetal ion, Gas electrode, Inert electrode, Redox electrode, Metal-metal insoluble salt- salt anion. Determination of EMF of a cell, Nernst equation, Applications of EMF measurements

- Potentiometric titrations.

Fuel cells- Basic concepts, examples and applications

UNIT-V

Chemical Kinetics: 14 h

The concept of reaction rates. Effect of temperature, pressure, catalyst and other factors on reaction rates. Order and molecularity of a reaction, Derivation of integrated rate equations for zero, first and second order reactions (both for equal and unequal concentrations of reactants). Half—life of a reaction. General methods for determination of order of a reaction. Concept of activation energy and its calculation from Arrhenius equation. Theories of Reaction Rates: Collision theory and Activated Complex theory of bimolecular reactions. Comparison of the two theories (qualitative treatment only). Enzyme catalysis- Specificity,

factors affecting enzyme catalysis, Inhibitors and Lock & key model. Michaels- Menten equation- derivation, significance of Michaelis-Menten constant.

Co-curricular activities and Assessment Methods Continuous Evaluation: Monitoring the progress of student's learning Class Tests, Work sheets and Quizzes Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality Semester-end Examination: critical indicator of student's learning and teaching methods adopted byteachers throughout the semester.

List of Reference Books

- 1. Text book of physical chemistry by S Glasstone
- 2. Concise Inorganic Chemistry by J.D.Lee
- 3. Advanced Inorganic Chemistry Vol-I by Satyaprakash, Tuli, Basu and Madan
- **4.** Advanced physical chemistry by Gurudeep Raj
- **5.** Principles of physical chemistry by Prutton and Marron
- **6.** Advanced physical chemistry by Bahl and Tuli
- 7. Inorganic Chemistry by J.E.Huheey
- 8. Basic Inorganic Chemistry by Cotton and Wilkinson
- 9. A textbook of qualitative inorganic analysis by A.I. Vogel
- **10.** Atkins, P.W. & Paula, J. de Atkin's Physical Chemistry Ed., Oxford University Press 10th Ed (2014).
- 11. Castellan, G.W. Physical Chemistry 4th Ed. Narosa (2004).
- 12. Mortimer, R. G. Physical Chemistry 3rd Ed. Elsevier: NOIDA, UP (2009).
- 13. Barrow, G.M. Physical Chemistry

SEMESTER - IV

Course V LABORATORY COURSE

30hrs (2 h / w)

Practical-Course -VConductometric and Potentiometric Titrimetry 50 M Course outcomes:

At the end of the course, the student will be able to;

- 1. Use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- 2. Apply concepts of electrochemistry in experiments
- 3. Be familiar with electro analytical methods and techniques in analytical chemistry which study an analyte by measuring the potential (volts) and/or current (amperes) in an electrochemical cell containing the analyte

Conductometric and Potentiometric Titrimetry

50 M

- 1. **Conductometric titration** Determination of concentration of HCl solution using standard NaOH solution.
- 2. **Conductometric titration** Determination of concentration of CH₃COOH Solution using standard NaOH solution.
- 3. **Conductometric titration** Determination of concentration of CH₃COOH and HCl in a mixture using standard NaOH solution.
- 4. **Potentiometric titration** Determination of Fe (II) using standard K₂Cr₂O₇ solution.
- 5. Determination of rate constant for acid catalyzed ester hydrolysis.