

KRISHNA UNIVERSITY::MACHILIPATNAM

M.Sc. (Computer Science) COURSE STRUCTURE

Semester - I						
Course Code	Name of the Course	Hours			Cr	edits
		L	Т	Р		
IEAK/SUB/PAPER					Theory	Practicals
20MCS101	Data Structures	4	_	_	4	<u> </u>
20MCS102	Programming and	4			4	
200105102	Problem Solving using Python				·	\$S'
20MCS103	Computer Organization	4	-	-	4	-
20MCS104	Formal Languages and Automata Theory	4	-	-	4) ⁷ -
20MCS105	Programming and Problem Solving using Python Lab	-	-	8		4
20MCS106	Data Structure Lab	-	-	8		4
		16	-	16	16	8
	Total	32	hours pe	r week	24 Credits	per semester

L - Lecture, T- Tutorial & P - Practicals

Semester -II

Course Code	Name of the Course	Hours		Cre	edits	
		L	Т	Р		
YEAK/SUB/PAPEK					Theory	Practicals
20MCS201	Design and	4		-	4	-
	Analysis of					
	Algorithms					
20MCS202	Software	3	1	-	4	-
	Engineering					
20MCS203	Operating	4	-	-	4	-
	Systems					
20MCS204	Database	4	-	-	4	-
	Management					
	Systems					
200EMCS205	Open	4			4	-
	Elective –I					
20MCS206	Unix	-	-	8	-	4
	Operating					
	Systems Lab					

	Total	36 hours per week		week	28Credits J	oer semester
	Sub-Total	19	1	16	20	8
	Management Systems Lab					
20MCS207	Database	-	-	8		4

Semester -III

Course Code	Name of the		Hours	5	Credits		
	Course						
VEAD/SUD/DADED		L	Т	Р			
I EAR/SUD/F AF ER					Theory	Practicals	
20MCS301	Compiler Design	4	-	-	4		
20MCS302	Computer Networks	4	-	-	4	$\mathcal{O}^{\mathcal{I}}$	
20MCS303	Principles of Programming Language	4	-	-	4	-	
20 MCS 304	Artificial Intelligence	4	-	-	4	-	
200EMCS305	Open Elective-II	4	-	-	4	-	
20MCS306	Compiler Design Lab	-	-	8	-	4	
20MCS307	Computer Networks Lab	-	-	8	-	4	
	Sub-Total	20		16	20	8	
	Total	36	hours pe	r week	28 Credits	per semester	
Semester - IV							

Semester - IV

Beinester							
Course Code	Name of the		Hou	rs	Cre	edits	
	Course						
			Т	Р			
					Theory	Practicals	Field/Project work
20MCS401	* MOOCS	4	-	-	4	-	-
20MCS402.1 Or 20MCS402.2	Elective-I Big Data Analytics Or Machine Learning	4			4		
20MCS403.1 Or	Elective-II Cloud	4			4		

	Total		20		26 Credits	per semester		
	Sub-Total	16		4	16	2	8	
20MCS406	Project	-	-	-	-	-	8	
	Technologies Lab							
20MCS405	Web	-	-	4	_	2		A
20MCS404	Web	4			4			
201407	Computing							
	DNA							
20110210012	Or							
20MCS403.2	computing							

> Open Electives:

Course code	Name of the course	Semester	Credits
200EMCS205	Open Elective -I	II	4
200EMCS305	Open Elective -II	III	4
		TOTAL	8

> Total number of credits at the end of course:

S.No	Semester	Credits
1	I Semester	24
2	II Semester	28
3	III Semester	28
4	IV Semester	26
	ТОТАІ	106

J

 IOTAL
 106

 Note: *Open Elective/Non-core 8 Credits will not be considered for division / percentage.

> Evaluation

Evaluation		
I Semester	Marks	
1. Four theory papers 4X100	=400	
2. Programming and problem solving using	Python lab=100	Total = 600 M
3. Data Structures Lab	=100	
II Semester	Marks	
1. Five theory papers 5X100	= 500	
2. Unix Operating System Lab	= 100	Total = 700 M
3. Database Management Systems Lab	= 100	
	,	
		`
III Semester	Marks	
1. Five theory papers 5X100	= 500	
	3	>

2. Compiler design Lab	= 100	Total = 700 M
3. Computer Networks Lab	= 100	

IV Semester	Marks	J	
1. Four Theory 4X100	=400		
2. Practical Lab	= 100	>	Total = 700 M
3. Project work	= 200		

Grand total Marks = 600+700+700+700= **2700**

1. Open Elective / Non-core I of student choice from other departments 100MTotal = 200M2. Open Elective / Non-core II of student choice from other departments 100MTotal = 200M

Note: Open Elective/Non-core 200 marks will not be considered for division / percentage. The total marks will be 2500 only.

20MCS101: DATA STRUCTURES

Details of the syllabus

Unit 1	Introduction and Overview : Elementary Data Organization, Data Structures,
	Data Structure Operations, Algorithms: Complexity, Time-Space Tradeoff.
	Preliminaries : Mathematical Notations and Functions, Algorithmic Notation,
	Control Structures, Complexity of Algorithms. Other Asymptotic Notations, Sub
	algorithms, Variables, Data Types
Unit 2	String Processing : Storing Strings, Character Data Type, String Operations, Word
	Processing, Pattern Matching Algorithms.
	Arrays, Records and Pointers : Linear Arrays, Representation and Traversing
	Linear Arrays, Inserting and Deleting, Bubble Sort, Linear Search, Binary Search,
	Multidimensional Arrays, Pointer Arrays, Record Structures, Representation of
	records in memory, Parallel Arrays, Matrices, Sparse Matrices.
Unit 3	Linked Lists : Representation, Traversing, Searching, Memory Allocation: Garbage
	Collection, Insertion, Deletion, Header Linked Lists Two-Way Lists.
	Stacks, Queues, Recursion : Stacks, Array representation, Linked List
	representation, Evaluation of Arithmetic Expressions, Quick sort, Recursion, Towers
	of Hanoi, Queues, Linked representation of Queues, Deques, Priority Queues.
Unit 4	Trees : Binary trees, Representing and traversing binary trees, Traversal algorithms
	using stacks, Header nodes, Binary Search Trees, Searching, Insertion and Deletion
	in Binary Search Trees, AVL Search Trees, Insertion and Deletion in AVL trees,
	m-way search trees, searching, insertion and deletion in m-way search tree, Heap:
	Heap Sort, Huffman's Algorithms, General Trees
Unit 5	Graphs : Terminology, Sequential representation of Graphs, Warshall's Algorithm,
	Linked representation of Graphs, Operations on Graphs, Traversing a Graph,
	Topological Sorting.
	Conting and Compliant Location Cont. Col. (1)
	Sorting and Searching : Insertion Sort, Selection sort, Merging, Merge sort, Radix
	sort, Searching and Data modification, Hasning.

Text books

	Author	Title	Publisher
1	Seymour Lipschutz	Data Structures	McGraw Hill (Schaum's Outlines)

Reference books

	Author	Title	Publisher
1	Seymour Lipschutz	Theory and Problems of Data Structures	McGraw Hill (Schaum's Outlines)
2	John R Hubbard, Second Edition	Data Structures with Java	McGraw Hill (Schaum's Outlines)
3	Robert Lafore	Data Structures & Algorithms in Java	Second edition, Pearson Education

20MCS102: PROGRAMMING AND PROBLEM SOLVING USING PYTHON Details of the syllabus

Unit 1	1 Basics of Python Programming-Features of Python, History of Python, The Future		
	of Python, Writing and Executing First Python Program, Literal Constants, Variables		
	and Identifiers, Data Types, Input Operation, Comments, Reserved Words,		
	Indentation, Operators and Expressions, Expressions in Python, Operations on		
	Strings, Other Data Types, Type Conversion.		
Unit 2	Decision Control Statements-Conditional Branching Statements, Basic Loop		
	Structures, Nested Loops, The break statement, The continue statement, The pass		
	statement. The else statement used with loops.		
	Functions and Modules- Function Definition, Function Call, Variable Scope and		
	Lifetime, The return statement, More on Defining Functions, Recursive functions,		
	Modules, Packages in Python, Standard Library Modules.		
Unit 3	Python Strings Revisited-Concatenating, Appending and Multiplying Strings,		
	String formatting operator, Built in String Methods and Functions, Comparing		
	Strings, Regular Expressions.		
	Data Structures- Sequence, Lists, Functional Programming, Tuple, Sets,		
	Dictionaries.		
Unit 4 Classes and Objects- Classes and Objects, Class Method and self Argumen			
	variables and Object Variables, Public and Private Data Members, Private		
	Methods, Calling a Class Method from Another Class Method, Built-in Class		
	Attributes, Class Methods, Static Methods.		
Unit 5	Inheritance. Inheriting Classes in Python Types of Inheritance. Abstract Classes		
	and Interfaces		
1	Error and Exception Handling- Introduction to Errors and Exceptions, Handling		
	Exceptions, Raising Exceptions, Built- in and User defined Exceptions		
	Operator Overloading- Concept of Operator Overloading, Advantage of Operator		
			

Text books

	Author	Title	Publisher
1	Reema Thareja	Python Programming Using Problem Solving Approach	Oxford University Press

Reference books

	Author	Title	Publisher
1	Wesley Chun	Core Python Programming	Prentice Hall

20MCS103: COMPUTER ORGANIZATION

Details of the syllabus

Unit 1	Digital Logic Circuits: Digital Computers, Logic Gates, Boolean algebra, Map		
	Simplification, Combinational Circuits, Flip-flops, Sequential Circuits.		
	Digital Components: Integrated Circuits, Decoders, Multiplexers, Registers, Shift		
	Registers, Binary Counters, Memory Unit.		
	Data Representation: Data types, Complements, Fixed-point Representation,		
	Floating-point representation, other binary codes, Error detection Codes.		
Unit 2	2 Register Transfer and Micro operations : Register transfer language, Register		
	transfer, Bus & memory Transfers, Arithmetic micro operations, logic micro		
	operations, Shift micro operations, Arithmetic Logic Shift Unit		
	Basic Computer Organization and Design: Instruction Codes, Computer registers,		
	Computer Instructions, Timing and Control, Instruction Cycle, Memory-Reference		
	Instructions, Input-output Interrupt.		
Unit 3	3 Micro programmed Control: Control memory, Address Sequencing, Micro program		
	Example, Design of control Unit.		
	Central Processing Unit: General Register Organization, Stack Organization,		
	Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program		
	Control.		
Unit 4	Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline,		
	Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processors.		
	Computer Arithmetic: Introduction, Addition and subtraction, Multiplication		
	Algorithm, Floating point arithmetic operations, Decimal Arithmetic unit, Decimal		
	Arithmetic operations.		
Unit 5	Input-Output Organization: Peripheral Devices, Input-Output Interface,		
	Asynchronous Data Transfer, Modes of Transfer, Priority Interrupt, Direct Memory		
	Access (DMA).		
	Memory Organization: Memory Hierarchy, Main Memory, Auxiliary Memory,		
¢.	Associative Memory, Cache Memory, Virtual Memory.		

Text books

	Author	Title	Publisher
1	M. Morris Mano	Computer System Architecture	3 rd Edition, Pearson Education (2008).

Reference books

	Author	Title	Publisher
1	V. Rajaraman, T.	Computer Organization and	PHI
	Radha Krishnan	Architecture	
2	Behrooz Parhami	Computer Architecture	Oxford (2007)
3	ISRD group	Computer Organization	Ace series, TMH (2007)
4	William Stallings	Computer Organization and Architecture – Designing for	Pearson Education (2005)
		Performance	
5	P.Chakraborty	Computer Architecture and Organization	Jaico Books (2008)

20MCS104: FORMAL LANGUAGES AND AUTOMATA THEORY

Details of the syllabus

Unit 1	Fundamentals: Strings, Alphabet, Language, Operations, finite automaton model,
	acceptance of strings, and languages, FA, transition diagrams and Language recognizers.
	Finite Automata: Deterministic finite automaton, Non deterministic finite automaton
	and NFA with ε transitions - Significance, acceptance of languages, equivalence
	between NFA with and without $\boldsymbol{\epsilon}$ transitions, NFA to DFA conversion, minimization of
	FSM, equivalence between two FSMs, Finite Automata with output- Moore and Mealy
	machines.
Unit 2	Regular Languages: Regular sets, regular expressions, identity rules, construction of
	finite automata for a given regular expressions and its inter conversion, Pumping
	lemma of regular sets, closure properties of regular sets (proofs not required).
Unit 3	Grammar Formalism: Regular grammars-right linear and left linear grammars,
	equivalence between regular linear grammar and FA, inter conversion, Context free
	grammar, derivation trees, sentential forms, right most and leftmost derivation of strings.
	Context Free Grammars: Ambiguity in context free grammars. Minimization of
	Context Free Grammars. Chomsky normal form, Greibach normal form, Pumping
	Lemma for Context Free Languages. Enumeration properties of CFL (proofs not
	required).
Unit 4	Push down Automata: Definition, model, design of PDA, acceptance by final state and
	acceptance by empty stack, equivalence of CFL and PDA, interconversion (proofs not
	required), Introduction to DCFL and DPDA.
	• 5
Unit 5	Turing Machine: Definition, model, design of TM, recursively enumerable languages
	and recursive languages, types of Turing machines (proofs not required).
	Computability Theory: Chomsky hierarchy of languages, decidability of problems,
	undecidability of Posts Correspondence problem, Definition of P and NP problems.

Text books

	Author	Title	Publisher
1	Hopcroft H.E. and Ullman	Introduction to Automata Theory Languages and Computation	J. D. Pearson Education

•

Reference books

	Author	Title	Publisher
1	John C Martin	Introduction to languages and the	ТМН
		Theory of Computation	
2	Lewis H.P. &	Elements of Theory of	Pearson PHI
	Papadimitriou C.H	Computation	
3	Mishra and	Theory of Computer Science and	2 nd edition, PHI.
	Chandrashekaran	Automata languages and	
		computation	
4	Daniel I.A. Cohen	Introduction to Computer	John Wiley
		Theory	

KRISHNA UNIVERSITY, MACHILIPATNAM – 521003 DEPARTMENT OF COMPUTER SCIENCE MCS, I SEMESTER 20MCS105: PROGRAMMING AND PROBLEM SOLVING USING PYTHON LAB

List of Programs

1. Write Python Program to reverse a number and also find the Sum of digits in the reversed number.

Prompt the user for input.

- 2. Write Pythonic code to check if a given year is a leap year or not.
- 3. Write Pythonic code to check if a given year is a leap year or not.
- 4. Write Python code to determine whether the given string is a Palindrome or not using slicing.
- 5. Write Python program to add two matrices and also find the transpose of the resultant matrix.
- 6. Write Python program to swap two numbers without using Intermediate/Temporary variables.

Prompt the user for input.

7. Consider a Rectangle Class and Create Two Rectangle Objects. Write Python program to

Check Whether the Area of the First Rectangle is Greater than Second by Overloading > Operator.

- 8. Write Python program to count the number of times an item appears in the list.
- 9. Write Python program to convert uppercase letters to lowercase and vice versa.
- 10. Write Python program to perform a linear search for a given Key number in the list and report

Success or Failure.

11. Write Python program to sort numbers in a list in ascending order using Bubble Sort by

passing the list as an argument to the function call.

12. Write Python program to Calculate Area and Perimeter of different shapes using Polymorphism.

KRISHNA UNIVERSITY, MACHILIPATNAM – 521003 DEPARTMENT OF COMPUTER SCIENCE MCS, I SEMESTER 20MCS106 : DATA STRUCTURES LAB

List of Programs

- 1. Java program to implement Stack operations using Arrays
- 2. Java program to implement Queue operations using Arrays
- 3. Java program to implement linked list operations using Arrays
- 4. Java Program to implement tree traversal techniques
- 5. Java program to convert infix expression to postfix expression
- 6. Java program to evaluate postfix expression
- 7. Java program to implement Binary search.
- 8. Java program to implement Selection sort
- 9. Java program to implement Insertion sort
- 10.Java program to implement quick sort
- 11.Java program to implement Merge Sort.

MCS201: DESIGN AND ANALYSIS OF ALGORITHMS

Details of the syllabus

it 1	Introduction to Algorithm : Algorithm definition, properties, Different areas to study
	about Algorithms, Pseudo code expressions for an algorithm, Performance Analysis,
	Time Complexity & Space Complexity, Asymptotic notations
	Elementary Data Structures: Stacks and Queues, Trees: Terminology - Binary
	Trees, Dictionaries : Binary Search Trees, Heaps, Heapsort, Sets and disjoint set Union:
	Introduction - union and find operations. ; Graphs: Introduction - Definitions - Graph
	Representations.
it 2	Introduction to Divide and Conquer : Binary search, Binary search analysis, Quick
	sort, Quick sort analysis, Merge sort, Merge sort Analysis, Strassen's matrix
	multiplication, Finding Maximum and minimum.
	Greedy Method : Introduction, General method, Job sequencing with deadlines,
	single source shortest path problem, Optimal storage on tapes, Knapsack problem,
	Minimum cost spanning trees : Prim's Algorithm, Kruskal's Algorithm.
it 3	Dynamic Programming : Single source shortest path problem, Multi stage graphs, All
	pairs shortest path, Optimal Binary search tree, 0/1 Knapsack problem, Reliability
	design, Travelling person Problem, Flow shop scheduling.
	Basic Traversal and Search Techniques: Techniques for Binary Trees, Techniques
	for graphs: Breadth First Search and Traversal-Depth First Search; Connected
	Components and Spanning Trees -Bi-connected components and DFS
it 4	Introduction to Backtracking : General method, N-queens problem, sum of sub sets
	problem, Graph coloring, Hamiltonian cycles, Knapsack problem.
	Branch and Bound : The Method: Least Cost search - The 15 puzzle - control
1	abstractions for LC search - Bounding - FIFO Branch and Bound - LC Branch and
	Bound; 0/1 knapsack problem: LC Branch and Bound solution - FIFO Branch and
	Bound solution; Traveling Sales person.

it 5	NP-Hard and NP -complete problems : Basic concepts : Non deterministic
	algorithms -The classes NP hard and NP complex; Cook's theorem - NP hard graph
	problems : Clique Decision Problem -Node cover decision problem chromatic number
	decision problem - Directed Hamiltonian cycle - Traveling sales person decision
	problem - and/or graph decision problem; NP-hard scheduling Problems: scheduling
	identical processors - flow shop scheduling -job shop scheduling; NP-hard code
	generation problems: code generation with common sub expressions -Implementing
	parallel assignment instructions; Some simplified NP-hard problems.

Text books

	Author	Title	Publisher
1	Sartaj Sahni	Fundamentals of Computer Algorithms.	2 nd Edition, University Press
Reference books		•	

-			
	Author	Title	Publisher
1	Anany Levitin	Introduction to the Design &	2 nd Edition, Pearson
		Analysis of Algorithms	Education
2	I Chandra Mohan	Design and Analysis of Algorithms	PHI
3	Prabhakar Gupta and	Design and Analysis of Algorithms	PHI
	Vineet Agarwal		
4	Parag Himanshu Dave	Design and Analysis of Algorithms	Pearson Education

20MCS202: SOFTWARE ENGINEERING

Details of the syllabus

Unit 1	Introduction to software Engineering- The Evolution Role of software, Software,		
	Quality of Software, Software Evolution. Software Engineering Process Models-		
	prescriptive models, waterfall model, Incremental model, RAD model, Evolutionary		
	process model.		
Unit 2	Software Architecture – Software Architecture, Data design, Architecture styles and		
	patterns, Architectural design, mapping data flow into software architecture. Software		
	Analysis Model- Requirements analysis, Data modeling concepts, Object-oriented		
	modeling, Class- based modeling, flow-oriented modeling.		
Unit 3	Software Design Engineering- Design within the context of software Engineering,		
	Design process and quality, Design concepts, Design model, Pattern based software		
	design. Software Testing Strategies - Static approach to software testing, Validation		
	testing, System testing, Black-Box testing, White-Box testing, Object oriented testing		
	models, Art of Debugging.		
Unit 4	Software Metrics- Framework for product metrics, Metrics for analysis, Design,		
	Source code, testing and maintenance, Metrics for process and project domains.		
	Software Re-Engineering- Software Re-Engineering, Reverse Engineering,		
	Restructuring, Forward engineering.		
Unit 5	Project Organization & Responsibilities-, Project organizations, evolution of		
	organizations. Process Automation- Automation building blocks, project environment.		
	Project control & Process Instrumentation- The seven core metrics, Management		
	indicators, Quality indicators, Life cycle expectations, Programmatic software metrics,		
	Metrics automation, tailoring the process, Process discriminates.		

Text books

	Author	Title
1	Roger S. Pressman	Software Engineering-A
		practitioner's Approach
2	Walker Royce	Software Project Management- A
		unified Framework

20MCS203: OPERATING SYSTEMS

Details of the syllabus

Unit 1	Introduction: Where does an operating system fit in? : System Levels, What			
	Operating Systems do? : Hardware Resources, Resource Management, Virtual			
	Computers, A Virtual Computer: Virtual Processor, Virtual Primary Memory,			
	Virtual Secondary Memory, Virtual I/O.			
	The Hardware Interface: The CPU: General- Purpose Registers, Control			
	Registers, Processor Modes, Instruction Set, Machine Instructions in C++ code,			
	Memory and Addressing, Interrupts, I/O Devices: Disk Controller.			
Unit 2	The Operating System Interface: What are System Calls? : How to Make a			
	System Call, What is a System Call Interface?, An Example System Call Interface:			
	System Call Overview, Hierarchical File Naming System, File and I/O System			
	Calls, open Files, Examples of File I/O, Naming Operating System Objects,			
	Devices as files: Unification of the File and Device Concepts, The Process			
Concept: Processes and programs, process Management System Calls,				
	Communication between Processes: Communication-Related System Calls,			
	Example of Interprocess Communication, UNIX-Style Process Creation, Standard			
	Input and Standard Output: Communicating with Pipes, Naming of Pipes and			
	Message Queues, Summary of System Call Interfaces.			
Unit 3	Implementing Processes: The System Call Interface, Implementation of a Simple			
	Operating System: Guide to the Code, The Architecture, Implementation of			
•	Processes: Process Creation, process States, Process Dispatching, Flow of Control			
A	Through the Operating System.			
Unit 4	Memory Management: Levels of Memory Management, Linking and Loading a			
	Process: Creating a Load Module, loading a Load Module, Allocating Memory in a			
	Running Process,, Variations in Program Loading: Load Time Dynamic Linking, Run			
	Time Dynamic Linking, Solutions to the Memory Management Design Problem:			
	Static Division into a Fixed Number of Blocks, Buddy Systems, powers-of-two			
	Allocation, Dynamic Memory Allocation, Keeping Track of the Blocks: The List			
	Method, Keeping Allocated Blocks on the Block List, Examples of Dynamic Memory			

	Allocation: Logical and Physical Memory, Allocating Memory to Processes, Static		
	Memory Management.		
	Virtual Memory: Fragmentation and Compaction, Dealing with Fragmentation:		
	Separate code and Data Spaces, Segments Noncontiguous Address Spaces, pag		
	Tables in Hardware Registers, Page Tables in Memory, Using a Page Table Cache		
	Analysis Models of Paging with Caching, Memory Allocation with Paging,		
	Terminology: Page and Page Frame, Page Tables, Paging Summary.		
Unit 5	⁵ Virtual Memory Systems: Page Replacement, Global Page Replacement		
	Algorithms: Measuring the Performance of a Page Replacement Algorithm, Optima		
	Page Replacement, Theories of Program paging Behavior, Random Page		
	Replacement, First In First Out FIFO Page Replacement, Least Recently Used Page		
	Replacement, Approximations of LRU, Clock Algorithms, Page Replacement		
	Examples, Local Page Replacement Algorithms: What Is a Working Set?, Program		
	Phases, Variable Resident Set Sizes, The Working Set Paging Algorithm,		
	Approximating the Working Set, WSClock Paging Algorithm.		

Text books

	Author	Title	Publisher
1	Charles Crowley	Operating Systems: A Design- Oriented Approach	TATA MCGRA-HILL EDITION.

Reference books

	Author	Title	Publisher
1	Abraham	Operating System Principles	8th Edition, Wiley Student
	Silberchatz, Peter B.		Edition.
	Galvin, Greg Gagne		
2	Naresh Chauhan	Principles of Operating Systems	OXFORD University
			Press
3	Sumitabhadas	Unix Concept and application	
4	YashwantKanetkar	Unix Shell Programming	

20MCS204: DATABASE MANAGEMENT SYSTEMS

Unit 1	Databases and Database Users: Introduction, Characteristics of the Database			
	Approach, Actors on the Scene, Workers behind the scene, Advantages of the using			
	the DBMS Approach.			
	Database System Concepts and Architecture: Data Models, Schemas and			
	Instances, Three Schema architecture and Data Independence, Database Languages			
	and Interfaces, Centralized and Client/Server Architecture for DBMS, Classification			
	of Database Management Systems.			
Unit 2	Data Modeling Using the ER Model: Conceptual Data models, Entity Types, Entity			
	Sets, Attributes and Keys, Relationship types, Relationship sets, roles and structural			
	Constraints, Weak Entity types, Relationship Types of Degree Higher than Two,			
	Refining the ER Design for the COMPANY Database.			
	The Relational Algebra and Relational Calculus: Unary Relational Operations:			
	SELECT and PROJECT, Relational Algebra Operations from set Theory, Binary			
	Relational Operations: JOIN and DIVISION, Additional Relational Operations,Examples, The Tuple Calculus and Domain Calculus.The Enhanced Entity-Relationship Model: Sub classes, Super classes and			
	Inheritance, Specialization and Generalization, Constraints and Characteristics of			
	Specialization and Generalization			
Unit 3	Functional Dependencies and Normalization for Relational Databases: Informal			
	Design Guidelines for Relation Schemas, Functional dependencies, Normal Forms			
	Based in Primary Keys, General Definitions of Second and Third Normal Forms,			
	Boyce-Codd Normal Form, Multivalued Dependencies and Fourth Normal Form, Join			
1	Dependencies and Fifth Normal Form, Inclusion Dependencies.			
	SQL-99: Schema Definition, Constraints, Queries and Views: SQL Data			
	Definitions and Data Types, Specifying Constraints in SQL, Schema Change			
<i>«</i>	Statements on SQL, Basic Queries in SQL, More Complex SQL Queries, INSERT,			
	DELETE and UPDATE statements in SQL, Triggers and Views.			
Unit 4	Introduction to Transaction Processing Concepts and Theory: Introduction to			

	Transaction Processing, Transaction and System Concepts, Desirable Properties of		
	Transactions, Characterizing Schedules Based on Recoverability, Characterizing		
	schedules Based on Serializability.		
	Concurrency Control Techniques: Two Phase Locking Techniques for		
	Concurrency Control, Concurrency Control Based on Timestamp Ordering,		
	Multiversion Concurrency control techniques, Validation concurrency control		
	Techniques.		
Unit 5	5 Disk Storage, Basic File Structures and Hashing: Introduction, Secondary Storage		
	Devices, Buffering of Blocks, Placing file Records on Disk, Operations on Files, Files		
	of Unordered Records, Files of Ordered Records, Hashing Techniques, Other Primary		
	File Organizations, Parallelizing Disk Access using RAID Technology.		
	Indexing Structures for Files: Types of Single-Level Ordered Indexes, Multilevel		
	Indexes, Dynamic Multilevel Indexes Using B-Trees and B ⁺ Trees, Indexes on		
	Multiple Keys, Other Types of Indexes.		

Text books			
	Author	Title	Publisher
1	Elmasri.R and	Fundamentals of Database Systems.	Pearson Education (2007)
	Navathe.S		Chapters: 1.1 to 1.6, 2, 13.1
			to 13.10, 14, 3.1 to 3.6, 3.9,
			4.1 to 4.5, 5, 6, 8, 10, 11, 17,
			18.1 to 18.5, 25.1 to 25.3,
			25.6

Reference books

4.1

Re	ference books		
	Author	Title	Publisher
1	Peter Rob, Carlos	Database Systems– Design,	Eigth Edition, Thomson
	Coronel	Implementation and Management	(2008)
2	C.J. Date, A.Kannan,	An Introduction to Database	VII Edition Pearson
	S.Swamynathan	Systems	Education (2006).
3	Raman A Mata –	Database Management Systems	Schaum's Outlines, TMH
	Toledo, Panline K.		(2007)
	Cushman		
4	Steven Feuerstein	Oracle PL/SQL – Programming	10 th Anniversary Edition,
			OREILLY (2008)

20MCS206: Unix Operating Systems Lab

List of programs

- 1. Write programs using the following system calls of UNIX operating system: fork, exec, getpid, exit, wait, close, stat, opendir, readdir
- Write programs using the I/O system calls of UNIX operating system (open, read, write, etc)
- 3. Write C programs to simulate UNIX commands like ls, grep, etc.
- 4. Given the list of processes, their CPU burst times and arrival times, display/print the Gantt chart for FCFS and SJF. For each of the scheduling policies, compute and print the average waiting time and average turnaround time.
- 5. Given the list of processes, their CPU burst times and arrival times, display/print the Gantt chart for Priority and Round robin. For each of the scheduling policies, compute and print the average waiting time and average turnaround time.
- Developing Application using Inter Process communication (using shared memory, pipes or message queues)
- 7. Implement the Producer Consumer problem using semaphores (using UNIX system calls).
- 8. Implement some memory management schemes I
- 9. Implement some memory management schemes II
- 10. Implement any file allocation technique (Linked, Indexed or Contiguous)

20MCS207: Database Management Systems Lab

Cycle-I: Aim: Marketing company wishes to computerize their operations by using following Tables.

Table Name: Client- Master			
Description: Used to st	ore client information		
Column Name	Data Type	Size	Attribute
CLIENT_NO	Varchar2	6	Primary key and first letter must start with 'C'
NAME	Varchar2	20	Not null
ADDRESS 1	Varchar2	30	
ADDRESS S	Varchar2	30	
CITY	Varchar2	15	
PINCODE	Varchar2	8	
STATE	Varchar2	15	
BAL_DUE	Number	10,2	

Table Name: Product_Master

Description: Used to store product information

Column Name	Data Type	Size	Attribute
PRODUCT _NO	Varchar2	6	Primary key and first letter must start with 'P'
DESCRIPTION	Varchar2	15	Not null
PROFIT _PERCENT	Number	4,2	Not null
UNIT _MEASUE	Varchar2	10	
QTY_ON_HAND	Number	8	
REORDER_LVL	Number	8	
SELL_PRICE	Number	8, 2	Not null, cannot be 0
COST_PRICE	Number	8,2	Not null, cannot be 0

Table Name: Salesman_master

Description: Used to store salesman information working for the company.

Column Name	Data Type	Size	Attribute
SALESMAN_NO	Varchar2	6	Primary key and first letter must start with 'S'
SALESMAN_NAME	Varchar2	20	Not null
ADDRESS1	Varchar2	30	
ADDRESS2	Varchar2	30	
CITY	Varchar2	20	
PINCODE	Number	8	
STATE	Vachar2	20	
SAL_AMT	Number	8,2	Not null, cannot be 0

TGT_TO_GET	Number	6,2	Not null, cannot be 0
YTD_SALES	Number	6,2	Not null
REMARKS	Varchar2	20	

Table Name: SALES-ORDERDescription: Used to store client's orders

Column Name	Data Type	Size	Attribute
ORDER_NO	Varchar2	6	Primary key and first letter must start with 'S'
CLIENT_NO	Varchar2	6	Foreign Key
ORDER _DATE	Date		
DELY _ADDRESS	Varchar2	25	
SALESMAN_NO	Varchar2	6	Foreign Key
DELY_TYPE	Char	1	Delivery: part(p)/ full(f) and default 'F'
BILL_YN	Char	1	
DELY_DATE	Date		Can't be less than order date
ORDER _STATUS	Varchar2	10	Values ("In Process", "Fulfilled", "Back Order", "Cancelled.

Table Name: SALES_ORDER_DETAILS

Description: Used to store client's order with details of each product ordered.

Column Name	Data Type	Size	Attribute
ORDER _NO	Varchar2	6	Primary key references SALES_ORDER table
PRODUCT_NO	Varchar2	6	Foreign Key references SALES_ORDER_table
QTY_ORDERED	Number	8	
QTY_DISP	Number	8	
PRODUCT _RATE	Number	10,2	Foreign Key

Solve the following queries by using above tables.

- 1. Retrieve the list of names, city and the state of all the clients.
- 2. List all the clients who are located in 'Mumbai' or 'Bangalore'.
- 3. List the various products available from the product_master table.
- 4. Find the names of sales man who have a salary equal to Rs.3000.
- 5. List the names of all clients having 'a' as the second letter in their names.
- 6. List all clients whose Bal due is greater than value 1000.
- 7. List the clients who stay in a city whose first letter is 'M'.
- 8. List all information from sales-order table for orders placed in the month of July.
- 9. List the products whose selling price is greater than 1000 and less than or equal to 3000.
- 10. Find the products whose selling price is greater than 1000 and also find the new selling price as original selling price 0.50.
- 11. Find the products in the sorted order of their description.
- 12. Find the products with description as '540HDD' and 'Pen drive'.
- 13. Count the total number of orders.
- 14. Print the description and total qty sold for each product.
- 15. Calculate the average qty sold for each client that has a maximum order value of 15,000.

- 16. Find all the products whose quantity on hand is less than reorder level.
- 17. List the order number and day on which clients placed their order.
- 18. Find out the products and their quantities that will have to deliver in the current month.
- 19. Find the names of clients who have placed orders worth of 10000 or more.
- 20. Find the client names who have placed orders before the month of June,2008.

Cycle-II

Aim: A manufacturing company deals with various parts and various suppliers supply these parts. It consists of three tables to record its entire information. Those are as follows.

Supplier (Supplier_No, Sname, City, status) Part(Part_no, pname, color, weight, city, cost) Shipment (supplier_No, Part_no, city) JX(project_no, project_name, city) SPJX (Supplier_no, part_no, project_no, city)

- 1. Get supplier numbers and status for suppliers in Chennai with status > 20.
- 2. Get project names for projects supplied by supplier S.
- 3. Get colors of parts supplied by supplier S_1 .
- 4. Get part numbers for parts supplied to any project in Mumbai.
- 5. Find the id's of suppliers who supply a red or pink parts.
- 6. Find the pnames of parts supplied by London supplier and by no one else.
- 7. Get the names of the parts supplied by the supplier 'Mart' and 'Miller'.
- 8. Get supplier names for suppliers who do not supply part P_2 .
- 9. Get all parirs of supplier numbers such that the suppliers concerned are "colocated".
- 10. Get suppliers names for the suppliers who supply at least one red part.

Cycle –III Employee Database

Aim: An enterprise wishes to maintain a database to automate its operations. Enterprise divided into a certain departments and each department consists of employees. The following two tables describes the automation schemas.

Emp(Empno, Ename, Job, Mgr, Hiredate, Sal, Comm, Deptno) Dept(Deptno, Dname, Loc)

- 1. List the details of employees who have joined before the end of September' 81.
- 2. List the name of the employee and designation of the employee, who does not report to anybody.
- 3. List the name, salary and PF amount of all the employees (PF is calculated as 10% of salary)
- 4. List the names of employees who are more than 2 years old in the organization.
- 5. Determine the number of employees, who are taking commission.
- 6. Update the employee salary by 20%, whose experience is greater than 12 years.
- 7. Determine the department does not contain any employees.
- 8. Create a view, which contains employee name and their manager names working in sales department.
- 9. Determine the employees, whose total salary is like the minimum salary of any department.
- 10. List the department numbers and number of employees in each department.
- 11. Determine the employees, whose total salary is like the minimum salary of any department.

- 12. List average salary for all departments employing more than five people.
- 13. Determine the names of employees, who take highest salary in their departments.
- 14. Determine the names of employees, who earn more than their managers.
- 15. Display ename, dname, even if no employee belongs to that department (use outer join)

20MCS301: COMPILER DESIGN

Details of the Syllabus

Unit 1	Introduction to Compiling, A simple One-pass Compiler	
Unit 2	Lexical Analysis, Syntax Analysis	
Unit 3	Syntax-directed translation, Type checking	
Unit 4	Run-time environments, Intermediate code generation	
Unit 5	Code generation, Code Optimization	

Text Books

	Author	Title	Publisher
1	Alfred V. Aho, Ravi	Compilers – Principles, Techniques	Pearson Education
	Sethi, Jeffrey D.	and Tools	
	Ullman		

Reference Books

	Author	Title	Publisher
1	J.P. Bannett	Introduction to Compiling techniques	McGraw Hill
2	Tremblay & Sorenson	Compiler Writing	McGraw Hill
3	Dhamdhere	Compiler Construction	MacMilan

20MCS302: COMPUTER NETWORKS

Details of t	he Syllabus
Unit 1	Uses of Computer Networks: Business Application, Home Applications, Mobile
	Users - Social Issues. Network Hardware : Local Area Networks - Metropolitan
	Area Networks - Wide Area Networks - Wireless Networks - Home Networks -
	Internetworks. Network Software: Protocol Hierarchies - Design Issues for the
	Layers - Connection Oriented and Connectionless Services - Service Primitives -
	The relationship of Services to Protocols. Reference Models: The OSI Reference
	Model - The TCP/IP Reference Model - A Comparison of OSI and TCP/IP
	reference Model.
	Physical Layer: Guided Transmission Media: Magnetic Media — Twisted Pair —
	Data Link Laver: Data Link Laver Design Issues: Services Provided to the
	Network I aver — Framing — Frror Control — Flow Control Frror Detection
	and Correction: Error correcting Codes — Error Detecting Codes Elementary
	Data Link Protocols : An unrestricted Simplex Protocol — A simplex Stop and
	wait Protocol — A simplex Protocol for a Noisy channel. Sliding Window
	Protocols: A one-bit sliding Window Protocol — A Protocol using Go Back N —
	A Protocol using selective Repeat. Example Data Link Protocols: HDLC — The
	Data Link Layer in the Internet.
Unit 2	The Medium Access Control Sublayer: Ethernet : Ethernet Cabling-Manchester
	Encoding — The Ethernet MAC sublayer Protocol - The Binary Exponential
	Backoff Algorithm - Ethernet Performance - Switched Ethernet - Fast Ethernet -
	Gigabit Ethernet - IEEE 802.2: Logical Link Control - Retrospective on Ethernet.
	Wireless Lans: The 802.11 Protocol Stack - The 802.11 Physical Layer - The
	802.11 MAC sublayer Protocol - The 802.11 Frame Structure. Bluetooth:
7	Bluetooth Architecture-Bluetooth Applications-The Bluetooth Protocol Stack -
	The Bluetooth Radio Layer - The Bluetooth Baseband Layer - The Bluetooth
	L2CAP layer - The Bluetooth Frame Structure. Data Link Layer Switching:
	Bridges from 802.x to 802.y - Local Internetworking - Spanning Tree Bridges -

	Remote Bridges - Repeaters, Hubs, Bridges, Switches, Routers and Gateways -
	Virtual LANs.
Unit 3	The Network Layer: Network Layer Design Issues : Store and Forward Packet
	Switching -Services Provided to the Transport Layer - Implementation of
	Connectionless Services - Implementation of Connection Oriented Services -
	Comparison of Virtual Circuit and Datagram subnets. Routing Algorithms : The
	Optimality Principle — Shortest Path Routing — Flooding — Distance Vector
	Routing — Link State Routing - Hierarchical Routing — Broadcast Routing —
	Multicast Routing — Routing for Mobile Hosts. Internetworking : How
	Networks Differ — How Networks can be connected — Concatenated Virtual
	Circuits — Connectionless Internetworking — Tunneling — Internet work
	Routing — Fragmentation. The Network Layer in the Internet: The IP Protocol
	— IP address — Internet Control Protocols — OSPF — The Internet Gateway
	Routing Protocol — BGP — The Exterior Gateway Routing Protocol.
Unit 4	The Transport Layer: The Transport Service: Services provided to the Upper
	Layers — Transport Services Primitives — Berkeley Sockets. Elements of
	Transport Protocols : Addressing — Connection Establishment — Connection
	Release — Flow Control and Buffering — Multiplexing — Crash Recovery. The
	Internet Transport Protocols :UDP
	Introduction to UDP — Remote Procedure Call — The Real Time Transport
	Protocol. The Internet Transport Protocols: TCP Introduction to TCP — The TCP
	Service Model — the TCP Protocol — The TCP segment header — TCP
	connection establishment — TCP connection release — Modeling TCP
•	connection management- TCP Transmission Policy — TCP congestion Control
	— TCP Timer Management — Wireless TCP and UDP — Transactional TCP.
Unit 5	The Application Layer: DNS : The Domain Name System : The DNS Name
	Space — Resource Records — Name Servers. Electronic Mail : Architecture and
	Services — The User Agent — Message Formats — Message Transfer — Final
	Delivery. The World Wide Web: Architecture Overview — Static Web
	Documents — Dynamic Web Documents – HTTP The Hyper Text Transfer
	Protocol — Performance Enhancements The Wireless Web. Multimedia:
	Introduction to Digital Audio — Audio Compression — Streaming Audio —

Internet Radio — Voice Over IP — Introduction to Video — Video Compression
— Video on Demand.

Text books

	Author	Title	Publisher
1	Andrew S.Tanenbaum	Computer Networks.	PHI

Reference books

	Author	Title	Publisher	
1	James F. Kurose,	Computer Networking	3 rd edition, Pearson	
	Keith W.Ross		Education	
2	Michael A. Gallo,	Computer Communications and	Cengage Learning (2008)	
	William M. Hancock	Networking Technologies		
3	Behrouz A Ferouzan	Data Communications and	4 th edition, TMH (2007)	
		Networking		

20MCS303: PRINCIPLES OF PROGRAMMING LANGUAGE

Details of t	s of the Syllabus		
Unit 1	Introduction : What is a programming language, Abstractions in programming		
	languages, Computational paradigms, Language definition, Language translation,		
	Language design.		
	History: The first programmer, The 1950s : The first programming languages		
	The 1960s : An explosion in programming languages, The 1970s : Simplicity,		
	abstraction, study, The 1980s : New directions and the rise of objectorientation,		
	The 1990s : Consolidation, The Internet, libraries and scripting, The future.		
	Language Design Principles: History and design criteria, Efficiency, regularity,		
	Further language design principles, C++ : A Case study in language design.		
	Syntax : Lexical structure of programming languages, Context-free grammars		
	and BNFs, Parse trees and Abstract syntax trees, Ambiguity, Associativity and		
	precedence, EBNFs and syntax diagrams, Parsing techniques and tools, Lexical		
	vs Syntax vs Semantics		
Unit 2 Basic Semantics: Attributes, binding and semantic functions, Declaration			
blocks and scope, The symbol table, Name resolution and overloading, Allocation, Lifetimes and the environment, Variables and Constants, Aliases			
	Simple types, Type constructors, Type equivalence, Type Checking, Type		
conversion, Polymorphic type checking, Explicit polymorphism.			
Unit 3	Control – I: Expressions and Statements: Expressions, Conditional Statements		
	and Guards, Loops and Variation on "while", The "goto" controversy, Exception		
	handling. Control – II : Procedures and Environments : Procedure definition and		
	activation, Procedure semantics, Parameter passing mechanisms, Procedure		
	environments, activations and allocation, Dynamic memory management,		
	Exception handling and environments.		
	Abstract data types and Modules : The algebraic specification of abstract data		
	types, Abstract data type mechanisms and modules, Separate compilation in C,		
	C++ name spaces and Java packages, Ada packages, Modules in ML, Modules in		
	earlier languages, Problems with abstract data type mechanisms, The		
	mathematics of abstract data types.		
Unit 4	Object – Oriented Programming : Software reuse and independence. Java :		

	objects, Classes and methods, Inheritance, Dynamic binding, C++, Small Talk,		
	Design issues in object – oriented languages, Implementation issues in object –		
	oriented languages. Functional Programming: Programs as functions,		
	Functional programming in an imperative language,Scheme : A Dialect of LISP,		
	ML : Functional programming with static typing, Delayed Evaluation, Haskell –		
	A fully curried lazy language with overloading, The Mathematics of functional		
	programming I : Recursive functions, The Mathematics of functional		
	programming II : Lambda calculus.		
	Logic Programming : Logic and Logic programs, Horn clauses, Resolution and		
	Unification, The language Prolog, Problems with logic programming, Extending		
	logic programming : Constraint logic programming and Equational systems.		
Unit 5	Formal Semantics: A Sample small language, Operational semantics,		
	Denotational semantics, Axiomatic semantics, Proofs of program corrections.		
	Parallel programming : Introduction to parallel processing, Parallel processing		
	and programming languages, Threads, Semaphores, Monitors, Message passing,		
	Parallelism in non-imperative languages.		

Text books

	Author	Title	Publisher
1	Kenneth C. Louden	Programming Languages Principles	Second Edition, Cengage
		and Practice	Learning(2008).
			Chapters: 1through 14

Reference books

	Author	Title	Publisher
1	Terrence W. Pratt &	Programming Languages Design	Fourth Edition, Pearson
	Mervin V. Zelkowitz	and Implementation	Education (2008)
2	Robert W. Sebesta	Concepts of Programming	Pearson Education 2001
		Languages	

20MCS304: ARTIFICIAL INTELLIGENCE

Details of the Syllabus

Unit 1	What is AI? : The AI Problems, The Underlying Assumption, What is AI		
	Technique?, The level of the Model, Criteria for Success. Problems, Problem		
	spaces & Search: Defining the Problem as a State Space Search, Production		
	Systems, Problem Characteristics, Production System Characteristics, Issues in		
	the design of Search Programs, Additional Problems. Heuristic search techniques:		
	Generate and Test, Hill Climbing, Best First Search, Problem Reduction,		
	Constraint Satisfaction, Means Ends Analysis.		
Unit 2	Knowledge Representation Issues: Representations and Mappings, Approaches to		
	Knowledge Representation, Issues in Knowledge Representation, The Frame		
	Problem Using Predicate Logic: Representing Simple Facts in Logic,		
	Representing Instance and Isa Relationships, Computable Functions and		
	Predicates, Resolution, Natural Deduction Representing knowledge using Rules:		
	Procedural versus Declarative Knowledge, Logic Programming, Forward versus		
	Backward Reasoning, Matching, Control Knowledge.		
Unit 3	Symbolic Reasoning under Uncertainity: Introduction to Nonmonotonic		
	Reasoning, Logics for Nonmonotonic Reasoning, Implementation Issues,		
	Augmenting a Problem Solver, Implementation: Depth-First Search,		
	Implementation: Breadth-First Search Weak slot & filler Structures: Semantic		
	Nets, Frames		
Unit 4	Planning : Overview, An Example Domain : The Blocks World, Components of a		
•	Planning System, Goal Stack Planning, Nonlinear Planning Using Constraint		
	Posting, Hierarchical Planning, Reactive Systems, Other Planning Techniques		
	Natural Language Processing: Introduction, Syntactic Processing, Semantic		
	Analysis, Discourse and Pragmatic Processing.		
Unit 5	Commonsense: Qualitative Physics, Commonsense Ontologies, Memory		
	Organisation, Case Based Reasoning Expert Systems: Representing and Using		
	Domain Knowledge, Expert System Shells, Explanation, Knowledge Acquisition.		

Text Books

	Author	Title	Publisher
1	Rich & Knight	Artificial Intelligence	TMH (1991)

Reference books

	Author	Title	Publisher
1	Winston. P.H	Artificial Intelligence	Addison Wesley (1993)

KRISHNA UNIVERSITY, MACHILIPATNAM – 521003 DEPARTMENT OF COMPUTER SCIENCE MCS - III SEMESTER 20MCS306: COMPILER DESIGN LAB

List of Programs

- 1. Implementation of symbol table.
- 2. Develop a lexical analyzer to recognize a few patterns in c (ex. Identifers, constants, comments, operators etc.)
- 3. Implementation of lexical analyzer using lex tool.
- 4. Generate yacc specification for a few syntatic categories.
 - a) Program to recognize a valid arithmetic expression that uses operator +, -, * and /.
 - b) Program to recognize a valid variable which starts with a letter followed by any number of letter or digits.
 - c) Implementation of calculator using lex and yacc.
- 5. Convert the bnf rules into yacc form and write code to generate abstract syntax tree.
- 6. Implement type checking
- 7. Implement control flow analysis and data flow analysis.
- 8. Implement any one storage allocation strategies(heap, stack, static)
- 9. Construction of DAG
- 10. Implement the back end of the compiler which takes the three address code and produces the 8086nassembly language instructions that can be assembled and run using a 8086 assembler. The target assembly instructions can be simple move , add, sub, jump. Also simple addressing modes are used.
- 11. Implementation of simple code optimization techniques (constant folding. etc.)

KRISHNA UNIVERSITY, MACHILIPATNAM – 521003 DEPARTMENT OF COMPUTER SCIENCE MCS - III SEMESTER 20MCS307: COMPUTER NETWORKS LAB

- 1. Write a program to implement data link layer framing method bit stuffing.
- 2. Write a program to implement data link layer framing method character stuffing.
- 3. Write a program to implement data link layer framing method character count.
- 4. Write a program to implement Cyclic Redundancy Check(CRC 12, CRC 16 and CRC CCIR) on a data set of characters.
- 5. Write a program to implement Dijkstra's algorithm to compute the shortest path through a graph.
- 6. Write a program to implement subnet graph with weights indicating delay between nodes. Now Obtain routing table art each node using distance vector routing algorithm.
- 7. Write a program to implement subnet of hosts to obtain Broadcasting
- 8. Write a program to implement by taking a 64 bit playing text and encrypt the same using DES algorithm.
- 9. Write a program to implement break DES coding.
- 10. Write a program to implement RSA algorithm to encrypt a text data and decrypt the same

36

20MCS402.1: BIG DATA ANALYTICS

Details of	the Syllabus		
Unit 1	Types of Digital data: Classification of Digital Data. Introduction to Big Data:		
	Characteristics of data, Evolution of Big Data, Definition of big data, Challenges		
	with Big data, What is Big Data?, Why Big Data?, Traditional Business		
	Intelligence versus Big Data, A typical Data Warehouse Environment, A typical		
	Hadoop Environment.		
Unit 2	Big data analytics: What is Big Data Analytics?, Top challenges facing Big Data		
	Analytics, Why Big Data Analytics is important?, Data Science, Terminologies		
	used in Big Data Environments.		
Unit 3	The Big Data Technology Landscape: NoSQL, Hadoop, Why Hadoop?, Why		
	not RDBMS?, RDBMS versus Hadoop, Hadoop Overview, HDFS, Processing		
	Data with Hadoop, Interacting with Hadoop Ecosystem.		
Unit 4	Introduction to MongoDB: What is MongoDB?, Why MongoDB?, Terms used		
	in RDBMS and MongoDB, Data types in MongoDB, MongoDB query language.		
	Introduction to Mapreduce programming: Introduction, Mapper, Reducer,		
	Combiner, Partitioner, Searching, Sorting and Compression.		
Unit 5	Introduction to Pig: What is Pig?, Pig on Hadoop, Pig Latin Overview, Data		
	Types in Pig, Running Pig, Execution Modes of Pig, HDFS commands,		
	Relational Operators, Eval function, Complex Data Types, User-Defined		
	Fucntions, Parameter Substitution, Word Count Example using Pig.		
	JasperReport using Jaspersoft: Introduction to Jasper Reports, Connecting to		
	MongoDB NoSql Database.		
1			

Text Books

	Author	Title	Publisher
1	Seema Acharya and	Big Data and Analytics	Wiley India Pvt. Ltd., 2016
	Subhashini		
	Chellappan		

Unit – 1 Introduction- Association, Supervised Learning - Classification - Regression, Unsupervised Learning, Reinforcement Learning. **Unit** – 2 Decision Tree - Divide and Conquer - Classification Trees (ID3, CART, C4.5) -Best Split - Regression Trees - Pruning Trees - Rule Extraction from Trees -Learning Rules - Multivariate Trees, Naive Bayes Classifier. Neural networks - Perceptron - Training a Perceptron: Regression - Learning Boolean AND – XOR - Multilayer Perceptrons – Backpropagation - Multiple Hidden Layers - and support vector machines. Unit – 3 Clustering - Semiparametric Density Estimation- Mixture Densities - Classes vs. Clusters - k-Means Clustering - Expectation-Maximization (EM) - Hierarchical Clustering - Agglomerative Clustering. Dimensionality Reduction - Feature Selection vs Extraction - Subset Selection -Principal Components Analysis (PCA) - Factor Analysis - Multidimensional Scaling - Linear Discriminant Analysis - Fisher's Linear Discriminant - Isomap, kernel methods. Unit – 4 Parametric learning - Maximum Likelihood Estimation - Gaussian (Normal) Distribution - Bias and Variance - Bayes' Estimator - Parametric Classification -Regression - Linear Regression - Polynomial Regression - Bayesian Model Selection, Nonparametric learning - Density Estimation - Kernel Estimator - k-Nearest Neighbor Estimator. **Unit** – 5 Reinforcement learning – Introduction - Single State: K-armed Bandit -Model-Based Learning - Value Iteration - Policy Iteration - Temporal Difference Learning - Exploration Strategies - Deterministic Rewards and Actions - Nondeterministic Rewards and Actions - Q-learning - Sarsa -Eligibility Traces - The Tiger Problem **Combining Multiple Learners** – Rationale – Voting - Fixed Combination Rules - Error-Correcting Output Codes - Bagging - AdaBoost - Mixture of Experts -

20MCS402.2: MACHINE LEARNING

Details of the Syllabus

Stacking - Fine-Tuning an Ensemble – Cascading - Combining Multiple Sources.

Text Books

	Author	Title	Publisher
1	Ethem Alpaydın	Introduction to Machine Learning, Second Edition	The MIT Press
			Cambridge,
			Massachusetts
			London, England.

20MCS403.1: CLOUD COMPUTING

Details of the Syllabus

Unit – 1	Era of Cloud Computing : Getting to know the cloud - Peer-To-Peer, Client-		
	Server, and Grid Computing – Cloud computing versus Client-server		
	Architecture - Cloud computing versus Peer-To-Peer Architecture - Cloud		
	computing versus Grid Computing - How we got to the Cloud - Server		
	Virtualization versus cloud computing - Components of Cloud computing -		
	Cloud Types – Cloud Computing Service delivery Models.		
	Introducing Virtualization : Introducing Virtualization and its benefits -		
	Implementation levels of Virtualization - Virtualization at the OS Level -		
	Virtualization Structure – Virtualization Mechanisms – Open Source		
	Virtualization Technology – Binary Translation with Full Virtualization –		
	Virtualization of CPU, Memory and I/o Devices - Hardware support for		
	Virtualization in Intex x86 Processor		
Unit – 2	Cloud Computing Services: Infrastructure as a Service – Platform as a Service –		
	Language and Pass – Software as a Service – Database as a Service.		
	Open Source Cloud Implementation and Administration: Open-source		
Eucalyptus Cloud Architecture – Open-source Openstack Cloud Architecture			
Unit – 3	Application Architecture for Cloud: Cloud Application Requirements –		
	Recommendations for Cloud Application Architecture – Fundamental		
	Requirements for Cloud Application Architecture – Relevance and use of Clien		
	server architecture for Cloud Applications – Service oriented Architecture for		
•	Cloud Applications.		
	Cloud Programming: Programming support for Google Apps Engine – Big		
	Table as Google's NOSQL System – Chubby as Google Distributed Lock Service		
	– Programming support for Amazon EC2 – Elastic Block Store (ESB).		
Unit – 4	Risks, Consequences and Costs for Cloud Computing : Introducing Risks in		
	Cloud Computing – Risk Assessment and Management – Risk of Vendor Lock-in		
	- Risk of Loss Control - Risk of Not Meeting Regulatory Compliances - Risk of		
	Resource Scarcity – Risk in Multi Tenant Environment – Risk of Failure – Risk		

	Inadequat SLA – Risk of Management of Cloud Resources – Risk of Network		
	Outages – Risks in the Physical Infrastructure – Legal Risk due to Legislation –		
	Risks with Software and Application Licensing – Security and Compliance		
	Requirements in a Public Cloud – Direct and Indirect Cloud Costs – Calculating		
	Total cost of Ownership for Cloud Computing – Cost Allocations in a Cloud .		
	AAA administration for clouds : The AAA Model, Single Sign-on for Clouds		
	- Industry Implementations for AAA- Authentication management in the Cloud -		
	Authorization management in the Cloud .		
Unit – 5	-5 Application Development for cloud : Developing On-Premise Versus Cloud		
	Applications – Modifying Traditional Applications for Deployment in the Cloud		
	- Stages during the development process of Cloud Application - Managing a		
	Cloud Application – Using Agile Software Development for Cloud Applications		
	- Cloud Applications : What Not to do - Static code analysis for cloud		
	applications – Developing Synchronous and Asynchronous Cloud Applications .		
	Mobile Cloud Computing : Definition of Mobile Cloud Computing –		
	Architecture of Mobile Cloud Computing – Benefits of Mobile Cloud Computing		
	– Mobile Cloud Computing Challenges.		

Text Books

	Author	Title	Publisher
1	Kailash Jayaswal,	Cloud Computing, Black Book	Dreamtech press
	Jagannath Kallakurchi,		
	Donald J. Houde		
	Dr. Deven Shah		
			•

Reference books

	Author	Title	Publisher
1	Thomas Erl, Zaigham	Cloud Computing - Concepts	Pearson
	Mahmood, Ricardo	Technology and Architecture	
	Puttini		
2	Raj Kumar Buyya,	Mastering Cloud Computing,	ТМН
	Christen	Foundations and Application	
	vecctiola, S Tammarai	Programming	
	selvi		
	/		

20MCS403.2: DNA COMPUTING

Details of t	Details of the Syllabus				
Unit 1	Computing Paradigms: High Performance computing, Parallel Computing,				
	Distributed Computing, Grid Computing, Cloud Computing, Quantum				
	Computing, DNA Computing.				
Unit 2	Introduction to DNA, Structure of DNA, Introduction to RNA, difference				
	between DNA and RNA, Splicing System, Polymerase chain reaction, Gel				
	Electophoresis, Protein Synthetization- Codons, Proteins, DNA Codon table.				
Unit 3	Introduction to DNA Computing, NP Hard and NP Complete Problems, Adelman				
	Hamiltonian Problem, 3-SAT Problem.				
	Theoretical Development: Splicing systems, Sticker Systems, Watson Crick				
	Automata.				
Unit 4	Cryptography, Traditional Cryptography advantages & disadvantages, quantum				
	Cryptography advantages & disadvantages, DNA Cryptography advantages &				
	disadvantages.				
Unit 5	Symmetric Key Cryptography using DNA, Public Key. Implementation of DES				
	using DNA, DNA ASCII Table Cryptography using DNA.				

Reference books

	Author	Title	Publisher			
1	W. Stallings2009 Cryptography and Network S		4thedition, Pearson Education,			
		Principles and Practices	Prentice Hall, NJ			
2	J.D.Watson2004	Molecular Biology of the Gene	5th edition, The			
	. 6		Benjamin/Cummings Publishing			
			Co., Inc			
	X					

20MCS404: WEB TECHNOLOGIES

Unit 1	Introduction: Evolution of the Internet and World Wide Web, Web Basics, Multitier
	Application Architecture, Client-Side Scripting versus Server-Side Scripting, Object
	Technology
	HTML5: Introduction, Editing HTML5, First HTML5 Example, W3C HTML5
	Validation Service, Headings, Linking, Images, Special Characters and Horizontal
	Rules, Lists, Tables, Forms, Internal Linking, meta Elements, HTML5 Form input
	Types, input and datalist Elements and autocomplete Attribute, Page-Structure
	Elements.
Unit 2	CSS: Introduction, Inline Styles, Embedded Style Sheets, Conflicting Styles, Linking
	External Style, Positioning Elements, Backgrounds, Element Dimensions, Box Model
	and Text Flow, Media Types, Building a CSS Drop-Down Menu, User Style Sheets,
	Text Shadows, Rounded Corners, Color, Box Shadows, Image Borders, Animation-
	Selectors.
	JavaScript: Introduction to Scripting, Control Statements I, Control Statements II,
	Functions, Arrays, Objects, Document Object Model, Event Handling.
Unit 3	JQuery Basics: String, Numbers, Boolean, Objects, Arrays, Functions, Arguments,
	Scope, Built-in Functions. jQuery - Selectors: CSS Element Selector, CSS Element
	ID Selector, CSS Element Class Selector, CSS Universal Selector, Multiple Elements
	E, F, G Selector, Callback Functions. jQuery – DOM Attributes: Get Attribute Value,
	Set Attribute Value. jQuery - DOM Traversing : Find Elements by index, Filtering
	out Elements, Locating Descendent Elements, JQuery DOM Traversing Methods.
Unit 4	JQuery CSS Methods : Apply CSS Properties, Apply Multiple CSS Properties,
1	Setting Element Width & Height, JQuery CSS Methods. jQuery - DOM
	Manipulation Methods: Content Manipulation, DOM Element Replacement,
	Removing DOM Elements, Inserting DOM elements, DOM Manipulation Methods.
	jQuery - Events Handling: Binding event handlers, Removing event handlers, Event
	Types, The Event Object, The Event Attributes. jQuery - Effects: JQuery Effect
	Methods, jQuery Hide and Show, jQuery Toggle, jQuery Slide – slideDown, slideUp,
	slideToggle, iOuery Fade – fadeIn, fadeOut, fadeTo, iOuery Custom Animations,

Unit 5 Databases: SQL, MYSQL.

PHP: Introduction, Simple PHP Program, Converting Between Data Types, Arithmetic Operators, Initializing and Manipulating Arrays, String Comparisons, String Processing with Regular Expressions, Form Processing and Business Logic, Reading from a Database, Using Cookies, Dynamic Content.

Text books

Author	Title	Publisher		
Harvey M. Deitel and	Internet and World Wide Web	Prentice Hall; 4th edition		
Paul J. Deitel	How To Program, 5e			
Robert W Sebesta	Programming with World Wide	Pearson Education; 4 th		
	Web	edition.		
Jon Duckett	JavaScript & jQuery	Wiley		
	Author Harvey M. Deitel and Paul J. Deitel Robert W Sebesta Jon Duckett	AuthorTitleHarvey M. Deitel andInternet and World Wide WebPaul J. DeitelHow To Program, 5eRobert W SebestaProgramming with World Wide WebJon DuckettJavaScript & jQuery		

20MCS405: Web Technologies Lab

Web Technologies

- 1. Write an HTML code to display your education details in a tabular format.
- 2. Write an HTML code to display your CV on a web page.
- 3. Write an HTML code to display the name of the University and Department name using inline, internal and external CSS.
- 4. Write a JavaScript to design a simple calculator to perform the following operations: sum, product, difference and quotient.
- 5. Write a JavaScript that calculates the squares and cubes of the numbers from 0 to 10 and outputs HTML text that displays the resulting values in an HTML table format.
- 6. Write a JavaScript code that displays text with increasing font size in the interval of 100ms in RED COLOR, when the font size reaches 50pt it displays in BLUE color. Then the font size decreases to 5pt.
- 7. Write a PHP program to keep track of the number of visitors visiting the web page and to display this count of visitors, with proper headings.
- 8. Write a PHP program to display a digital clock which displays the current time of the server.
- 9. Write the PHP program to multiply two matrices.
- 10. Write the PHP to find the transpose of the matrix.
- 11. Write a PHP program to sort the student records which are stored in the database using selection sort.
- 12. Using jQuery find all text areas, and makes a border. Then adds all paragraphs to the jQuery object to set their borders red.
- 13. Using jQuery add a new class to an element that already has a class.
- 14. Using jQuery insert some HTML after all paragraphs.

Open Electives:

Course code	Title of the Paper
200EMCS205	Fundamentals of Computers And
	Problem Solving Techniques
200EMCS305	Basics Of Cyber Security

** Open Elective Syllabus will be included later.

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCS Semester: I Paper Title with paper code: 20MCS101: DATA STRUCTURES (w.e.f admitted batch 2020-21)

Time: 3 Hours

Max. Marks: 70

Answer ALL questions

 $(10x2 = 20 \text{ Marks})^{10}$

- 1. a) Define data structures.
 - b) List out the basic operations on linked list.
 - c) What is time complexity?
 - d) Define a priority queue.
 - e) Define degree of the node with example
 - f) Define a binary tree.
 - g) What are the tasks performed during inorder traversal?
 - h) Define AVL tree.
 - i) Define graph.
 - j) What is sorting?

Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal Marks. (5x10 =

50 Marks)

UNIT – I

2. a) Discuss about the data structure operations.

(OR)

b) Explain about the control structures.

UNIT – II

3. a) Explain about Binary search process with an example.

(OR)

b) Discuss about the pattern matching algorithms.

UNIT – III

4. a) Explain about Double linked list operations.

(OR)

b) Explain about the operations of stack and its implementation with example.

UNIT – IV

5. a) Discuss tree traversal techniques in detail.

(OR)

b) Briefly discuss about the insertion and deletion of AVL search trees.

$\mathbf{UNIT} - \mathbf{V}$

6. a) Explain about the process of Warshall's algorithm.

(OR)

b) Discuss about merge sort with an example.

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCS Semester: I Paper Title with paper code: 20MCS102: PROGRAMMING AND PROBLEM SOLVING USING PYTHON (w.e.f admitted batch 2020-21)

Time: 3 Hours

Answer ALL questions

= 20 Marks)

- 1. a) Define constant.
 - b) How to declare variables and identifiers in Python?
 - c) Write about expressions in Python.
 - d) Explain continue statement.
 - e) Define Recursive function.
 - f) What is Regular expression?
 - g) Define sets
 - h) Define class.
 - i) Explain static method.
 - j) What is Inheritance?

Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal Marks. (5x10 =

50 Marks)

UNIT – I

2. a) Explain the basic data types available in Python with examples.

(OR)

b) Describe different operators in detail with examples.

UNIT – II

3. a) Explain Conditional Branching Statements in Python.

(OR)

b) How to define and call a function in Python.

UNIT – III

4. a) Explain Built-in String methods and functions in Python.

(OR)

b) Discuss the relation between tuples and lists, tuples and dictionaries in detail.

UNIT - IV

5. a) Explain the concept of scope and lifetime of variables in Python programming language with an

example.

(OR)

b) How to call a class method from another class method in Python.

$\mathbf{UNIT}-\mathbf{V}$

6. a) Explain different types of inheritances in Python.

(OR)

b) Discuss the advantages of operator overloading.

Max. Marks: 70

(10x2

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCS Semester: I Paper Title with paper code: 20MCS103: COMPUTER ORGANIZATION (w.e.f admitted batch 2020-21)

Time: 3 Hours

Max. Marks: 70

(10x2 = 20 Marks)

Answer ALL questions

- 1. a) What is computer Architecture?
 - b) Explain different logic gates.
 - c) Explain Memory unit.
 - d) What is memory transfer?
 - e) List of registers for a basic computer.
 - f) What is stack organization?
 - g) Briefly explain program control.
 - h) Explain decimal Arithmetic operations.
 - i) What is an input-output interrupt?
 - j) Write about Auxiliary Memory.

Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal Marks.

(5x10 = 50 Marks)

UNIT – I

2. A) What is Flip flop? Explain different types of Flip flops with their logic diagram.

(OR)

B) Explain the fixed point representation with an example.

UNIT – II

3. A) Explain about the arithmetic micro operations.

(OR)

B) Explain about the instruction cycle.

UNIT - III

4. A) Explain various Addressing modes.

(OR)

B) Explain various instruction formats.

UNIT-IV

5. A) Explain floating point arithmetic operations.

(OR)

B) Explain multiplication algorithm.

UNIT - V

6. A) Explain different modes of data transfers.

(OR)

B) Discuss about memory hierarchy.

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCS Semester: I Paper Title with paper code: 20MCS104: FORMAL LANGUAGES AND AUTOMATA THEORY (w.e.f admitted batch 2020-21)

Time: 3 Hours

Max. Marks: 70

Answer ALL questions

(10x2 = 20 Marks)

1. a) Draw the transition diagram for the given table and write the language for the same.

b) Find ε -closure of all states for the given transition diagram.

c) Define regular set and regular expression.

- d) Write regular expression for all strings which ends with 01 over $\{0, 1\}$.
- e) Define regular grammar with an example.
- f) Show that the following grammar is ambiguous for the string id + id * id $E \rightarrow E+E \mid E*E \mid (E) \mid id$
- g) Give the formal definition of Push down automata.
- h) Explain the model of PDA.
- i) What are recursively enumerable languages?
- j) Represent Chomsky hierarchy of languages and their counterpart automata.

Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal Marks. (5x10 = 50 Marks)

UNIT - I

- 2. A) Design DFA which accepts all the strings with even no. of 0's and even no. of 1's over an alphabet
 - {0, 1}.

(OR)

B) Construct a Mealy machine which is equivalent to the Moore machine

Present State	Next State		Output
	A=0	A=1	
→ q ₀	q ₃	q 1	0
\mathbf{q}_1	\mathbf{q}_1	\mathbf{q}_2	1
\mathbf{q}_2	\mathbf{q}_2	q ₃	0
\mathbf{q}_3	\mathbf{q}_3	\mathbf{q}_0	0

UNIT – II

3. A) Construct a finite automata for regular expression $1+00+010^*$

(OR)

B) Show that $L=\{a^nb^n | n \ge 1\}$ is not regular.

UNIT – III

4. A) Obtain a Right Linear Grammar for the language $L = \{a^n b^m | n \ge 2, m \ge 3\}$.

(OR)

- B) For the following grammar:
- $S \rightarrow ABC \mid BbB$, $A \rightarrow aA \mid BaC \mid aaa$, $B \rightarrow bBb \mid a \mid D$, $C \rightarrow CA \mid AC$, $D \rightarrow \varepsilon$
- i) Eliminate ε -productions.
- ii) Eliminate any unit productions in the resulting grammar.
- iii) Eliminate any useless symbols in the resulting grammar.

UNIT - IV

A) Convert the following Context Free Grammar to Push Down Automata
 S→AA | a
 A→SA | b

(OR)

- B) Write short notes on Post correspondence problem and Undesirability of problems.
- UNIT V6. A) Design a Turing machine for the language L={aⁿbⁿcⁿ|n>=1}.
 - (OR) B) Determine whether the following PCP problem has a solution or not. X={b,babbb,ba} Y={bbb,ba,a}.

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCS Semester: II Paper Title with paper code: 20MCS201- DESIGN AND ANALYSIS OF ALGORITHMS (w.e.f admitted batch 2020-21)

Time: 3 Hours

Max. Marks: 70

Answer ALL questions

(10x2 = 20 Marks)

- 1. a) Define Time Complexity and Space Complexity
 - b) What is a binary search tree?
 - c) What is the best case search time in binary search?
 - d) Differentiate Divide and Conquer and Greedy methods
 - e) Define optimal binary search tree.
 - f) What is an articulation point of graph?
 - g) Explain graph coloring problem.
 - h) Explain briefly branch and bound technique
 - i) What are non-deterministic algorithms?
 - j) When do we say that a problem is NP-Complete?

Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal Marks. (5x10 = 50 Marks)

UNIT – I

2. a) What is Performance analysis and define the asymptotic notations for best, average and worst case analysis of algorithms with suitable example.

(OR)

b) Define heap. Explain operations on heap with suitable examples.

UNIT – II

3. a) Explain with an example how divide and conquer approach can be used to sort the numbers in a file using quick sort method

(OR)

b) Apply Kruskal's algorithm to find a minimum spanning tree of a graph by taking suitable example.

UNIT – III

4. a) Solve the following 0/1 Knapsack problem using dynamic programming P = (11,21,31,33), W=(2,11,22,15), C=40, n=4

(OR)

b) Explain in detail about BFS and DFS of a graph with an example.

UNIT – IV

5. a) Explain 8-queens problem with an algorithm

(OR)

b) State Travelling salesman problem. Solve the travelling salesperson problem given below using branch and bound approach

∞	7	3	.2	8
3	8	6	24	9
5	8	x	6	.8
9	3	5	x	1
8	4	9	8	x

- **UNIT V** 6. a) Explain satisfiability problem and write the algorithm for the same. (OR)
 - b) Explain NP-hard scheduling problems.

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCS Semester: II Paper Title with paper code: 20MCS202: SOFTWARE ENGINEERING (w.e.f admitted batch 2020-21)

Time: 3 Hours

1. Answer ALL questions

Max. Marks: 70

(10x2 = 20 Marks)

- a) Define the term software engineering.
- b) Differentiate between functional and non functional requirements.
- c) What are the merits of waterfall model?
- d) What is reusability in software engineering?
- e) What is cyclomatic complexity?
- f) Explain the term project planning and project control in brief?
- g) Differentiate between white box and black box testing
- h) What do you mean by software maintenance?
- i) What are software reliability metrics? Explain.
- j) Explain the term software test case.

Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal Marks. (5x10 = 50 Marks)

UNIT – I

2. A) What are the five levels of CMM? List important features of each of these levels.

(OR)

B) Explain the following life cycle models in detail(i) Incremental model (ii) RAID model

UNIT – II

3. A) Write a detail note on requirement analysis and specification.

(OR)

B) Explain in detail about object oriented modeling and class based model.

UNIT – III

4. A) Explain different design methodologies in software development with suitable example.

(OR)

B) What is the process of software testing? Explain different testing methods with suitable example.

UNIT – IV

5. A) Explain in detail about the following(i) Software metrics(ii) Reverse Engineering

(OR) B) Discuss about the Software Re engineering in detail.

UNIT – V

6. A) Explain about Seven core metrics of software process model.

(OR)

B) What is Project organization and automation? Explain in detail.

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCA Semester: II Paper Title with paper code: 20MCA203: OPERATING SYSTEMS (w.e.f admitted batch 2020-21)

Time: 3 Hours

Max. Marks: 70

(10x2)

Answer ALL questions

= 20 Marks)

- 1. a) Define Operating System?
 - b) Explain Processor Modes?
 - c) How to make a System Call?
 - d) Discuss about communicating with Pipes?.
 - e) What are the IPC related system calls?
 - f) Define Process creation?
 - g) What is Linking and Loading a process?
 - h) What is Fragmentation?
 - i) Define Page Replacement?
 - j) What is a Working Set?

Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal
Marks.(5x10 = 50 Marks)

UNIT – I

(OR)

2. a) What does an Operating System do?

b) Explain I/O Devices?

UNIT – II

3. a) Explain the Process Concept?

(OR)

b) Explain UNIX-Style Process Creation?

UNIT – III

4. a) Explain Implementation of a simple Operating System? (OR)
b) Discuss Flow of Control through the Operating System?.

UNIT - IV

- 5. a) Explain Dynamic Memory Allocation?.
 - (OR)
 - b) Explain Noncontiguous Logical Address Spaces?

$\mathbf{UNIT} - \mathbf{V}$

6. a) Discuss First In First Out Page Replacement Algorithm with Example ? (OR)b) Explain Approximations of LRU?

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCS Semester: II Paper Title with paper code: 20MCS204: DATABASE MANAGEMENT SYSTEMS (w.e.f admitted batch 2020-21)

Time: 3 Hours

Answer ALL questions

Max. Marks: 70

(10x2 = 20 Marks)

1. a) Define Data?

- b) List any five advantages of Database Management Systems
- c) What is a weak entity?
- d) What is a Primary Key?
- e) Define Normalization.
- f) What is functional dependency?
- g) List out the properties of transactions.
- h) What is concurrency control?
- i)Define Hashing?
- j)Define Indexing?

Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal Marks. (5x10 = 50 Marks)

- UNIT I
- 2. A) Explain the three tier architecture and Data Independence for DBMS

(OR)

B) What is DBMS? Explain the characteristics of the DBMS approach?

$\mathbf{UNIT} - \mathbf{II}$

3. A) Discuss in detail about the concepts of E-R model with suitable examples

(OR)

- B) Describe various operations of Relational Algebra?
 - UNIT III
- 4. A) What is Normal Form? State 1NF, 2NF and 3NF with examples.

(OR)

B) Consider the following relational database:

Employee(employee-name, street, city) Works(employee-name, company-name, salary)

Company(company-name, city) Manages(employee-name, manager-name)

Give an expression in SQL for each of the following queries:

a) Find the names, street address and cities of residence for all employees who work for 'First Bank Corporation' and earn more than Rs. 10,000.
b) Find the names of all employees in the database who live in the same cities as the companies for which they work.
c) Find the names of all employees in the database who live in the same cities and on the same

streets as do their managers

 $\mathbf{UNIT} - \mathbf{IV}$

5. A) what is a Transaction? Explain various desirable properties of transactions.

```
(OR)
```

B) Explain two phase locking techniques for concurrency control?

$\mathbf{UNIT} - \mathbf{V}$

6. A) Explain in detail about B+ trees

(OR) B) Explain the storage management using RAID.

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCS Semester: III Paper Title with paper code: 20MCS 301: COMPILER DESIGN (w.e.f admitted batch 2020-21)

Time: 3 Hours

Max. Marks: 70

(5x10 = 50)

Answer ALL questions

(10x2 = 20 Marks)

- 1. a) What are the different types of Language Processors?
 - b) What happens in Analysis and Synthesis phases of compilation?c) Define an ambiguous grammar?
 - d) What is three-address code? Give an example?
 - e) What is syntax-directed definition?
 - f) Advantages of Parser.
 - g) What does heap and stack areas of run-time memory store?
 - h) What is CISC machine?
 - i) What is Code generation?
 - j) Define Dead code elimination.
- Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal Marks.

Marks)

UNIT – I

2. a) Explain the Structure of a Compiler.

(OR)

b) Explain Applications of Compiler Technology.

UNIT – II

3. a) Explain the role of the Lexical Analyzer.

(OR)

b) Explain the role of the Parser.

UNIT – III

4. a) Explain Applications of Syntax-Directed Translation.

(OR)

b) Discuss about Type checking.

$\mathbf{UNIT}-\mathbf{IV}$

5. a) What are the limitations of Access Links? How displays solve those issues?

(OR)

b) Generate code for the following three-address statements assuming stack allocation, where register SP points to the top of the stack.

call p call q return call r return return

$\mathbf{UNIT} - \mathbf{V}$

6. a) Discuss Issues in the Design of a Code Generator.

(OR)

b) Discuss about copy propagation and dead code elimination.

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCS Semester: III Paper Title with paper code: 20MCS 302: COMPUTER NETWORKS (w.e.f admitted batch 2020-21)

Time: 3 Hours

Max. Marks: 70

Answer ALL questions

(10x2 = 20 Marks)

- 1. a) What are the different types of networks?
 - b) What is flow control?
 - c) What are the responsibilities of data link layer?
 - d) Discuss about bridge and router.
 - e) Advantages of Ethernet.
 - f) Define Bluetooth.
 - g) What is OSPF?
 - h) What is multiplexing?
 - i) Define Berkeley socket.
 - j) What is SMTP?

Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal Marks. (5x10 = 50 Marks)

UNIT – I

2. a) Discuss about OSI reference model.

(OR)

b) Describe the guided transmission media.

UNIT – II

3. a) Explain error correction and detection method with an example.

(OR)

b) Explain IEEE 802.11 protocol stack and Frame structures

UNIT – III

4. a) Explain Distance Vector Routing algorithm with example.

(OR)

b) Discuss about IP protocol.

UNIT – IV

5. a) Explain TCP protocol Header format.

(OR)

b) Explain transport service primitives and TCP connection establishment.

$\mathbf{UNIT} - \mathbf{V}$

6. a) Discuss about DNS.

(OR)

b) Explain video compression and audio compression.

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCS Semester: III

Paper Title with paper code: 20MCS 303: PRINCIPLES OF PROGRAMMING LANGUAGES

(w.e.f admitted batch 2020-21)

Time: 3 Hours

Answer ALL questions

Max. Marks: 70

(10x2 = 20 Marks)

- 1. a) What is a programming langugae?
 - b) Define internet.
 - c) Explain Parse trees and Abstract syntax trees.
 - d) Difference between syntax and semantics.
 - e) What is overloading?
 - f) Explain explicit polymorphism.
 - g) Explain parameter passing mechanism.
 - h) What is Abstract data type?
 - i) Define Recursive function.
 - j) Define Threads.

Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal Marks. (5x10 = 50 Marks)

UNIT – I

2. a) Describe the structure of Context free grammars with an example.

(OR)

b) Discuss criteria for design of programming languages.

UNIT - II

3. a) Discuss in detail about function overloading and operator overloading with suitable examples.

(OR)

b) Show the working procedure of the type checker for the expression in C a[i]+I in detail.

UNIT – III

4. a) Discuss about handling of exceptions in Object Oriented programming languages.

(OR)

b) Write about the modules of abstract data type.

$\mathbf{UNIT}-\mathbf{IV}$

5. a) How to create classes and objects in Java? Explain with suitable examples.

(OR)

b) Discuss the problems of Logic programming with suitable examples.

$\mathbf{UNIT} - \mathbf{V}$

6. a) Explain in detail about Bounded Buffer Problem.

(OR)

b) Compare and Contrast shared and Distributed memory systems.

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCS Semester: III Paper Title with paper code: 20MCS 304: ARTIFICIAL INTELLIGENCE (w.e.f admitted batch 2020-21)

Time: 3 Hours

Max. Marks: 70

1. Answer ALL questions

(10x2 = 20 Marks)

- k) Define Artificial Intelligence.
- 1) What is the relevance of search and control strategies in problem?
- m) What is Heuristics?
- n) What is state space search?
- o) Define Constraint Satisfaction.
- p) What is an expert system?
- q) What is a frame problem?
- r) Distinguish between fact and Predicate.
- s) Define Semantic net?
- t) What is non monotonic reasoning?

Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal Marks. (5x10 = 50 Marks)

UNIT – I

7. A) What are the Problem Characteristics of Artificial Intelligence?

(OR)

B) Explain the state space search representation of water jug problem.

UNIT – II

8. A) Explain Resolution in predict logic with suitable example.

(OR)

B) Differentiate between Forward Reasoning and Backward Reasoning. Explain with

а

suitable example.

UNIT – III

9. A) Write different advantages and disadvantages of Depth First Search and Breath First Search.

(OR)

B) Provide relational structures for weak slot and filler structures. Compare their merits

and demerits.

$\mathbf{UNIT} - \mathbf{IV}$

10. A) Explain Goal stack planning with Block world problem example

(OR)

B) Explain different steps in Natural Language Processing.

UNIT - V

11. A) What is an Expert system? What are the main advantages in keeping the knowledge base separate from the control module in the knowledge base system?

(OR)

B) Explain about Case based reasoning with a suitable example.

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCS Semester: IV Paper Title with paper code: 20MCS 402.1: BIG DATA ANALYTICS (w.e.f admitted batch 2020-21)

Time: 3 Hours

1. Answer ALL questions

Max. Marks: 7((10x2=20 Marks)

- u) Define Big Data.
- v) Describe any five characteristics of Big Data.
- w) What is HDFC? List and explain all the components of HDFC.
- x) Explain different Challenges of big data.
- y) What is MongoDB.
- z) Write differences between RDBMS and Hadoop?
- aa) What is MapReduce?
- bb) What is data serialization.
- cc) What is YARN?
- dd) Explain the need of big data analytics?

Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal Marks. (5x10 = 50 Marks)

UNIT – I

- 2. A) Explain different Types of digital data: Unstructured, Semi-structured and Structured. (OR)
 - B) Explain Need and Challenges in Big Data Environment?

$\mathbf{UNIT} - \mathbf{II}$

3. A) What is Business Intelligence? List different business Intelligence applications with a suitable example.

(OR)

B) Explain Classification of Analytics with suitable example.

UNIT – III

4. A) Describe characteristics of a NoSQL database.

(OR)

B) Explain the types of NoSQL Data Stores in detail.

$\mathbf{UNIT} - \mathbf{IV}$

5. A) Explain Hadoop architecture and its components with proper Diagram

(OR)

B) Explain the essentials of Hadoop Ecosystem.

$\mathbf{UNIT}-\mathbf{V}$

6. A) Explain working of the following phases of Map Reduce with one common example (i) Map Phase (ii) Combiner phase (iii) Shuffle and Sort Phase (iv) Reducer Phase.

(OR)

B) Explain HDFS commands.

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCS Semester: IV Paper Title with paper code: 20MCS 402.2: MACHINE LEARNING

(w.e.f admitted batch 2020-21)

Time: 3 Hours

1. Answer ALL questions

Max. Marks: 70 (10x2 = 20 Marks)

- a) Define supervised learning.
- b) Define Machine learning.
- c) Define Information Gain.
- d) Define Back Propagation.
- e) What is Reinforcement Learning?
- f) Explain Regression with an example?
- g) Define Bagging
- h) What is a Density estimator? Give an example?
- i) What is Subset Selection?
- j) Define Q-learning

Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal
Marks.(5x10 = 50 Marks)

UNIT – I

2. A) What are classifications Models? Explain in detail.

(OR)

B) What are the elements of Reinforcement learning?

UNIT – II

3. A) Write ID3 decision tree algorithm and explain with a suitable example.

(OR)

B) What is a Neural Network? Explain hidden layer with a suitable example.

UNIT – III

4. A) Explain K-means clustering with a suitable example.

(OR)

B) Explain in detail about Principal Component Analysis for dimensionality reduction.

$\mathbf{UNIT}-\mathbf{IV}$

5. A) Explain in detail about the following

(i) Linear Regression (ii) Polynomial Regression

(OR)

B) Discuss about the K-nearest neighbor estimator.

UNIT – V

6. A) Explain about Model based learning with Example.

(OR)

B) Discuss learning task and Q learning in the context of reinforcement learning.

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCS Semester: IV Paper Title with paper code: 20MCS 403.1: CLOUD COMPUTING (w.e.f admitted batch 2020-21)

Time: 3 Hours

1. Answer ALL questions

- a) Define cloud computing.
- b) What is Grid computing?
- c) Define Virtualization.
- d) Explain Database as a service.
- e) Explain cloud application requirements.
- f) Define Service oriented Architecture.
- g) Explain ESB.
- h) Explain Malware and Internet attacks.
- i) What is a Synchronous cloud application?
- j) Explain the benefits of Mobile cloud computing.

Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal Marks. (5x10 = 50 Marks)

UNIT – I

2. A) Explain virtualization mechanisms.

(OR)

B) Write about peer-to-peer network families.

UNIT – II

- 3. A) Explain cloud computing services.
 - (OR) B) Explain open-source Eucalyptus Cloud Architecture.

UNIT – III

4. A) Explain NOSQL system.

(OR)

B) Explain fundamental requirements for Cloud Application Architecture.

UNIT – IV

5. A) Explain Authentication management in the cloud.

(OR)

B) What is utility computing? Explain utility model for cloud web services.

UNIT – V

- 6. A) Explain how to manage a Cloud Application. (OR)
 - B) Write about Mobile Cloud Computing Challenges.

Max. Marks: 70 (10x2 = 20 Marks)

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCS Semester: IV Paper Title with paper code: 20MCS403.2: DNA COMPUTING

(w.e.f admitted batch 2020-21)

Time: 3 Hours

Max. Marks: 70

Answer ALL questions

(10x2 = 20 Marks)

- 1. a) Define Cell?
 - b) Define Cloud Computing?
 - c) What are Purines?
 - d) What are the differences between DNA and RNA?
 - e) Define Codon?
 - f) Define PCR?
 - g) Watson Crick Automata?
 - h)What is DNA Computing?
 - i) Define Cryptography?
 - j) Define Public Key Cryptography?

Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal Marks. (5x10 = 50 Marks)

UNIT – I

2. a) Explain the components in Cloud Computing?

(OR)

- b) Explain the Computing Paradgims?
 - UNIT II
- 3. a). Explain the concept of Protein Synthetization?

(OR)

b). Explain the structured Codon Table

UNIT – III

4. a). Explain the theoretical model of Hamiltonian Path Problem solved by Adleman?

(OR)

b). Explain about NP Hard and NP Complete Problems?

UNIT - IV

5. a). Differentiate between Traditional Cryptography and DNA Cryptography?

(OR)

b) . Differentiate between Quantum Cryptography and DNA Cryptography?

UNIT – V

6. a). Explain the concept of Public Key Cryptography?

(OR)

b). Explain about the implementation of DES using DNA?

KRISHNA UNIVERSITY, MACHILIPATNAM -521003 MCS Semester: IV Paper Title with paper code: 20MCS404: WEB TECHNOLOGIES (w.e.f admitted batch 2020-21)

Time: 3 Hours

Max. Marks: 70 (10x2 = 20 Marks)

Answer ALL questions

- 1. a)What is WWW?
 - b) Explain Meta Elements.
 - c) Explain embedded style sheet with an example.
 - d) What is Event Handling?
 - e) List out built in functions in jQuery.
 - f) Define Array. How to declare arrays in jQuery?
 - g) How to set element width and height in JQuery?
 - h) Explain Arithmetic operations in PHP.
 - i) What are DDL statements?
 - j) Define cookies.

Answer Five Questions Choosing One Question from Each Unit. All Questions Carry Equal Marks. (5x10 = 50 Marks)

UNIT – I

2. A) How do you add Tables and Images to HTML page?

(OR)

B) Distinguish Client side scripting versus Server side scripting.

UNIT – II

3. A) Write short notes on user style sheets.

(OR)

B) Explain control statements in java script with example.

UNIT – III

4. A) What are jQuery Selectors? Give some examples.

(OR)

B) Explain jQuery DOM attributes with an example.

UNIT – IV

5. A) Explain jQuery CSS methods with an example. (OR)

(0)

B) What are the effect methods used in jQuey?

$\mathbf{UNIT} - \mathbf{V}$

6. A) Differentiate between SQL and MYSQL databases.

(OR)

B) How to read data from a database in PHP? Explain with an example.